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Median clustering is of great value for partitioning relational data. In this paper, a new prototype-based
clustering method, called Median Evidential C-Means (MECM), which is an extension of median c-means
and median fuzzy c-means on the theoretical framework of belief functions is proposed. The median var-
iant relaxes the restriction of a metric space embedding for the objects but constrains the prototypes to
be in the original data set. Due to these properties, MECM could be applied to graph clustering problems.
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dal partitions of graphs, which are more refined than crisp and fuzzy ones, enable us to have a better
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sets illustrate the performance of MECM and show its difference to other methods.
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1. Introduction

Cluster analysis or clustering is the task of partitioning a set of n
objects X = {x1,x,...,X,} into c small groups Q = {w;, W5, ..., ®}
in such a way that objects in the same group (called a cluster) are
more similar (in some sense or another, like characteristics or
behavior) to each other than to those in other groups. The cluster-
ing can be used in many fields such as privacy preserving [24],
information retrieval [5], text analysis [47], etc. It can also be used
as the first step of classification problems to identify the distribu-
tion of the training set [44]. Among the existing approaches to
clustering, the objective function-driven or prototype-based
clustering such as c-means and Gaussian mixture modeling is
one of the most widely applied paradigms in statistical pattern
recognition. These methods are based on a fundamentally very
simple, but nevertheless very effective idea, namely to describe
the data under consideration by a set of prototypes. They capture
the characteristics of the data distribution (like location, size, and
shape), and classify the data set based on the similarities (or
dissimilarities) of the objects to their prototypes [6].
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Generally, a c-partition of n objects in X is a set of n x ¢ values
{uy} arrayed as an n x ¢ matrix U. Each element u; is the member-
ship of x; to cluster j. The classical C-Means (CM) method aims to
partition n observations into ¢ groups in which each observation
belongs to the class with the nearest mean, serving as a prototype
of the cluster. It results in u; is either 0 or 1 depending whether
object i is grouped into cluster j, and thus each data point is
assigned to a single cluster (hard partitions). Fuzzy C-Means
(FCM), proposed by Dunn [11] and later improved by Bezdek [3],
is an extension of c-means where each data point can be a member
of multiple clusters with membership values (fuzzy partitions)
[25].

Belief functions have already been used to express partial infor-
mation about data both in supervised and unsupervised learning
[32,41]. Recently, Masson and Denoeux [32] proposed the applica-
tion of Evidential C-Means (ECM) to get credal partitions [9] for
object data. The credal partition is a general extension of the crisp
(hard) and fuzzy ones and it allows the object not only to belong to
single clusters, but also to belong to any subsets of Q by allocating
a mass of belief for each object in X over the power set 29. The
additional flexibility brought by the power set provides more
refined partitioning results than those by the other techniques
allowing us to gain a deeper insight into the data [32].

All of these aforementioned partition approaches are prototype-
based. In CM, FCM and ECM, the prototypes of clusters are the
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geometric centers of included data points in the corresponding
groups. However, this may be inappropriate as it is the case in
community detection problems for social networks, where the pro-
totype (center) of one group is likely to be one of the persons (i.e.
nodes in the graph) playing the leader role in the community. That
is to say, one of the points in the group is better to be selected as a
prototype, rather than the center of all the points. Thus we should
set some constraints for the prototypes, for example, let them be
data objects. Actually this is the basic principle of median cluster-
ing methods [16]. These restrictions on prototypes can relax the
assumption of a metric space embedding for the objects to be clus-
tered [16,18], and only similarity or dissimilarity between data
objects is required. There are some clustering methods for rela-
tional data, such as Relational FCM (RFCM) [20] and Relational
ECM (RECM) [33], but an underlying metric is assumed for the
given dissimilarities between objects. However, in median cluster-
ing this restriction is dropped [16]. Cottrell et al. [8] proposed Med-
ian C-Means clustering method (MCM) which is a variant of the
classic c-means and proved the convergence of the algorithm.
Geweniger et al. [16] combined MCM with the fuzzy c-means
approach and investigated the behavior of the resulted Median
Fuzzy C-means (MFCM) algorithm.

Community detection, which can extract specific structures
from complex networks, has attracted considerable attention
crossing many areas from physics, biology, and economics to soci-
ology. Recently, significant progress has been achieved in this
research field and several popular algorithms for community
detection have been presented. One of the most popular type of
classical methods partitions networks by optimizing some criteria.
Newman and Girvan [35] proposed a network modularity measure
(usually denoted by Q) and several algorithms that try to maximize
Q have been designed [4,7,10,42]. But recent researches have found
that the modularity based algorithms could not detect communi-
ties smaller than a certain size. This problem is famously known
as the resolution limit [14]. The single optimization criteria i.e.
modularity may not be adequate to represent the structures in
complex networks, thus Amiri et al. [1] suggested a new commu-
nity detection process as a multi-objective optimization problem.
Another family of approaches considers hierarchical clustering
techniques. It merges or splits clusters according to a topological
measure of similarity between the nodes and tries to build a hier-
archical tree of partitions [43,27,37]. Also there are some ways,
such as spectral methods [40] and signal process method [23,26],
to map topological relationship of nodes on networks into geomet-
rical structures of vectors in n-dimensional Euclidian space, where
classical clustering methods like CM, FCM and ECM could be
evoked. However, there must be some loss of accuracy after the
mapping process. As mentioned before, for community detection,
the prototypes should be some nodes in the graph. Besides, usually
only dissimilarities between nodes are known to us. Due to the
application of the relaxation on the data objects and the con-
straints on the prototypes, the median clustering could be applied
to the community detection problem in social networks.

In this paper, we extend the median clustering methods in the
framework of belief functions theory and put forward the Median
Evidential C-Means (MECM) algorithm. Moreover, a community
detection scheme based on MECM is also presented. Here, we
emphasize two key points different from those earlier studies.
Firstly, the proposed approach could provide credal partitions for
data set with only known dissimilarities. The dissimilarity measure
could be neither symmetric nor fulfilling any metric requirements.
It is only required to be of intuitive meaning. Thus it expands appli-
cation scope of credal partitions. Secondly, some practical issues
about how to apply the method into community detection prob-
lems such as how to determine the initial prototypes and the opti-
mum community number in the sense of credal partitions are

discussed. This makes the approach appropriate for graph parti-
tions and gives us a better understanding of the analyzed net-
works, especially for the uncertain and imprecise structures.

The rest of this paper is organized as follows: Section 2 recalls
the necessary background related to this paper. In Section 3, the
median c-means algorithm is presented and in Section 4, we show
how the proposed method could be applied in the community
detection problem. In order to show the effectiveness of our
approach, in Section 5 we test our algorithm on artificial and
real-world data sets and make comparisons with different meth-
ods. The final section makes the conclusions.

2. Background
2.1. Theory of belief functions

Let @ = {w;,®,,...,®.} be the finite domain of X, called the
discernment frame. The mass function is defined on the power
set2° ={A:ACQ}.

Definition 1. The function m: 2% — [0,1] is said to be the Basic
Belief Assignment (bba) on 29, if it satisfies:

> mA) =1. 1)

ACQ

Every A € 29 such that m(A) > 0 is called a focal element. The cred-
ibility and plausibility functions are defined in Egs. (2) and (3).

Bel(A)= " m(B),VACQ, 2)
BCAB#()
PI(A)= > m(B),VACQ. (3)
BrA=()

Each quantity Bel(A) measures the total support given to A, while
Pl(A) can be interpreted as the degree to which the evidence fails
to support the complement of A. The function pl: Q — [0,1] such
that pl(w;) = Pl({w;}) (w; € Q) is called the contour function associ-
ated with m. A belief function on the credal level can be trans-
formed into a probability function by Smets method. In this
algorithm, each mass of belief m(A) is equally distributed among
the elements of A [39]. This leads to the concept of pignistic proba-
bility, BetP, defined by

m(A)

BetP(w;) = A m@)’ (4)

wieACQ

where |A| is the number of elements of 2 in A.

Pignistic probabilities, which play the same role as fuzzy mem-
bership, can easily help us make a decision. In fact, belief functions
provide us many decision-making techniques not only in the form
of probability measures. For instance, a pessimistic decision can be
made by maximizing the credibility function, while maximizing
the plausibility function could provide an optimistic one [31].
Another criterion [31] considers the plausibility functions and con-
sists in attributing the class A; for object i if

A =arg Qlcaé({m?(X)Pl,-(X)}, (5)
where

bx) = KP) 1 . 6
ml( ) 1;X<‘X|r> ( )

In Eq. (5) mb(X) is a weight on P[;(X), and r is a parameter in [0, 1]
allowing a decision from a simple class (r = 1) until the total igno-
rance Q (r = 0). The value Zx allows the integration of the lack of
knowledge on one of the focal sets X C ©, and it can be set to be 1
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simply. Coefficient K? is the normalization factor to constrain the
mass to be in the closed world:

1

Kb = T—m (7)

2.2. Median c-means and median fuzzy c-means

Median c-means is a variant of the traditional c-means method
[8,16]. We assume that n (p-dimensional) data objects
X = {Xi1,X2,...,Xp} (i=1,2,...,n) are given. The object set is
denoted by X = {%1,X5,...,x,}. The objective function of MCM is
similar to that in CM:

Jvem = Zzuu ij» (8)

j=1i=1

where c is the number of clusters. As MCM is based on crisp parti-
tions, u; is either 0 or 1 depending whether ¥; is in cluster j. The
value dj is the dissimilarity between x; and the prototype vector
v; of cluster j (i=1,2,...,n,j=1,2,...,c), which is not assumed
to be fulfilling any metric properties but should reflect the common
sense of dissimilarity. Due to these weak assumptions, data object x;
itself may be a general choice and it does not have to live in a metric
space [16]. The main difference between MCM and CM is that the
prototypes of MCM are restricted to the data objects.

Median fuzzy c-means (MFCM) merges MCM and the standard
fuzzy c-means (FCM). As in MCM, it requires the knowledge of
the dissimilarity between data objects, and the prototypes are
restricted to the objects themselves [16]. MFCM also performs a
two-step iteration scheme to minimize the cost function

JvEem = Zzuﬁdia 9)

j=1 i=1

subject to the constrains

c

Zuﬂ(:]7vi€{1727"'7n}7 (10)
k=1

and

n

> ur>0,Vke{1,2,....c}, (11)

i=1

where each number uy €[0,1] is interpreted as a degree of
membership of object i to cluster k, and 8 > 1 is a weighting expo-
nent that controls the fuzziness of the partition. Again, MFCM is
preformed by alternating update steps as for MCM:

e Assignment update:
d-2/6-n

ij
c =2/(p-1) "
Zk:l dik

e Prototype update: the new prototype of cluster j is set to be
v; = x with

Uj = (12)

X —arg mmEx 2:u"d2 (13)

{vj:0=x(

2.3. Evidential c-means

Evidential c-means [32] is a direct generalization of FCM in the
framework of belief functions, and it is based on the credal parti-
tion first proposed by Denceux and Masson [9]. The credal partition
takes advantage of imprecise (meta) classes [30] to express partial

knowledge of class memberships. The principle is different from
another belief clustering method put forward by Schubert [38],
in which conflict between evidence is utilized to cluster the belief
functions related to multiple events. In ECM, the evidential mem-
bership of an object x; = {X;1,X2,...,Xjp} is represented by a bba
m; = (m;(A)) - A;C Q) over the given frame of discernment
Q = {w1,ws,...,w:}. The optimal credal partition is obtained by
minimizing the following objective function:

n

Jean =3 > AImiA)'d; + Z&Z (0 (14)
i=1Aj CQA#0
constrained on
> miA) +mi() =1, (15)

A C QA0

where m;(A;) £ m; is the bba of x; given to the nonempty set A;,
while m;(0) £ m, is the bba of x; assigned to the emptyset, and | - |
is the cardinality of the set. Parameter o is a tuning parameter
allowing to control the degree of penalization for subsets with high
cardinality, parameter j3 is a weighting exponent and ¢ is an adjust-
able threshold for detecting the outliers. It is noted that for credal
partitions, j is not from 1 to c as before, but ranges in [0, f] with
f =2°. Here d; denotes the Euclidean distance between x; and the
barycenter (i.e. prototype, denoted by ;) associated with A;:

d; = Ix - 3, (16)
where 7; is defined mathematically by

1 if Wy € Ak
v = ) 2 Zsk,vk, with s;; = { 0 else . (17)
The notation || - || denotes the Euclidean norm of a vector, and vy is

the geometrical center of all the points in cluster k. The update for
ECM is given by the following two alternating steps and the update
formulas can been obtained by Lagrange multipliers method.

e Assignment update:

|A|*0<//f | Z/ﬂ 1)
e Sa ol Vd ik2/ VD g
k
Vi=1,2...,n,Vj/A CQA #0 (18)
my=1- myVvi=1,2,...,n (19)
A=)

e Prototype update: The prototypes (centers) of the classes are
given by the rows of the matrix v..,, which is the solution of
the following linear system:

HV =B, (20)
where H is a matrix of size (c x c) given by
He=>" > A mik1=1,2,. (21)
i Ai2{om}

and B is a matrix of size (c x p) defined by

n
By =Y x> A M 1=1,2,.

i=1 Ay

C7 q:1727,p

(22)

2.4. Some concepts for social networks

In this work we will investigate how the proposed clustering
algorithm could be applied to community detection problems in
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social networks. In this section some concepts related to social net-
works will be recalled.

2.4.1. Centrality and dissimilarity

The problem of assigning centrality values to nodes in graphs
has been widely investigated as it is important for identifying
influential nodes [48]. Gao et al. [15] put forward Evidential
Semi-local Centrality (ESC) and pointed out that it is more reason-
able than the existing centrality measures such as Degree Central-
ity (DC), Betweenness Centrality (BC) and Closeness Centrality
(CQC). In the application of ESC, the degree and strength of each
node are first expressed by bbas, and then the fused importance
is calculated using the combination rule in belief function theory.
The higher the ESC value is, the more important the node is. The
detail computation process of ESC can be found in [15].

The similarity or dissimilarity index signifies to what extent the
proximity between two vertices of a graph is. The dissimilarity
measure considered in this paper is the one put forward by Zhou
[49]. This index relates a network to a discrete-time Markov chain
and utilizes the mean first-passage time to express the distance
between two nodes. One can refer to [49] for more details.

2.4.2. Modularity

Recently, many criteria were proposed for evaluating the parti-
tion of a network. A widely used measure called modularity, or Q
was presented by Newman and Girvan [35]. Given a hard partition
with ¢ groups (w1, @,,...,®:) U= (uy),.., where uy is one if ver-
tex i belongs to the k;, community, O otherwise, and let the c crisp
subsets of vertices be {V1,V,,...,V.}, then the modularity can be
defined as [13]:

kik
&= HWHZZ<1 ||m/\|> @3)

k=1ijeV,
where  [[W|| = >0, Wy ki=>,wy. The node  subsets
{Vi,k=1,2,...,c} are determined by the hard partition Uy, but

the role of U is somewhat obscured by this form of modularity func-
tion. To reveal the role played by the partition U explicitly, Havens

et al. [21] rewrote the equations in the form of U. Let
k= (ki,ky,... . k)", B=W — k'k/||W||, then
Q= Uik Ujke
w33 ( - i)
|W”Z"k3"k
— trace (UTBU) /W], (24)
where = (Ugy, Uk, - .., Unk) -

Havens et al. [21] pointed out that an advantage of Eq. (24) is
that it is well defined for any partition of the nodes not just crisp
ones. The fuzzy modularity of U was derived as

Qs = trace (UTBU) /W, (25)

where U is the membership matrix and u; represents the member-
ship of community k for node i. If u, is restricted in [0, 1], the fuzzy
partition degrades to the hard one, and so Q; equals to Q,, at this time.

3. Median Evidential C-Means (MECM) approach

We introduce here median evidential c-means in order to take
advantages of both median clustering and credal partitions. Like
all the prototype-based clustering methods, for MECM, an objec-
tive function should first be found to provide an immediate mea-
sure of the quality of clustering results. Our goal then can be

characterized as the optimization of the objective function to get
the best credal partition.

3.1. The objective function of MECM

To group n objects in X = {X,X,,...,X,} into c clusters
1,2, .., the credal partition M = {m;,m,,...,m,} defined
on Q = {w,w,,...,m} is used to represent the class membership
of the objects, as in [9,32]. The quantities my; = m;(A;)
(A; # 0,A; C Q) are determined by the dissimilarity between object
x; and focal set A; which has to be defined first.

Let the prototype set of specific (singleton) cluster be
V ={vy,v,,...,v:}, where »; is the prototype vector of cluster
w; (i=1,2,...,c) and it must be one of the n objects. If |Aj]| =1,
i.e., A is associated with one of the singleton clusters in € (suppose
to be w; with prototype vector »;), then the dissimilarity between
x; and A; is defined by

=d*(x, v)), (26)

where d(x;, x;) represents the known dissimilarity between object x;
and x;. When |A;] > 1, it represents an imprecise (meta) cluster. If
object x; is to be partitioned into a meta cluster, two conditions
should be satisfied. One is the dissimilarity values between x; and
the included singleton classes’ prototypes are similar. The other is
the object should be close to the prototypes of all these specific
clusters. The former measures the degree of uncertainty, while
the latter is to avoid the pitfall of partitioning two data objects irrel-
evant to any included specific clusters into the corresponding
imprecise classes. Let the prototype vector of the imprecise cluster
associated with A; be v, then the dissimilarity between ¥; and A; can
be defined as:

1
Y AT ZwkeAj

& (x;, vi) + pymin{d(x;, vy.) : 0 € A}

-
@ = — (27)
with

- wa,u)yeAj \/(d(xi= vx) - d(xiv ”y))z 28
pij B nZ(ux.wyeAjd(vxv l’y) ' ( )

In Eq. (27) y weights the contribution of the dissimilarity of the
objects from the consisted specific clusters and it can be tuned
according to the applications. If 7 = 0, the imprecise clusters only
consider our uncertainty. Discounting factor p; reflects the degree
of uncertainty. If p; = 0, it means that all the dissimilarity values
between x; and the included specific classes in A; are equal, and
we are absolutely uncertain about which cluster object x; is actually
in. Parameter # (€ [0, 1]) can be tuned to control of the discounting
degree. In credal partitions, we can distinguish between “equal evi-
dence” (uncertainty) and “ignorance”. The ignorance reflects the
indistinguishability among the clusters. In fact, imprecise classes
take both uncertainty and ignorance into consideration, and we
can balance the two types of imprecise information by adjusting
7. Therefore, the dissimilarity between x; and A;(A; = 0,4; C Q), d;;,
can be calculated by

_ & (xi, ) Al =1,
di = V@Zwkgﬁdz("n”k)‘*lhj min{d(x;, v}, ):0, €A} . (29)
! 7+1 |AJ| > 1
Like ECM, we propose to look for the credal partition
M= {m;,m,,... m,} e RV and the prototype set
V ={wv,v,,..., v} of specific (singleton) clusters by minimizing

the objective function:
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Jveem (M, V) = Z |Aj|“m§d2+2()2 i (30)
i=1A;COA#
constrained on
ml-,-—}—m,-@:l, (31)
A CQAF0
where m; £ m;(A;) is the bba of n; given to the nonempty set

Aj,my £ m;(0) is the bba of n; assigned to the empty set, and dj is
the dissimilarity between x; and focal set A;. Parameters o, f,é are
adjustable with the same meanings as those in ECM. Note that Jy;zcu
depends on the credal partition M and the set V of all prototypes.

3.2. The optimization

To minimize Jyqy, an optimization scheme via an Expectation-
Maximization (EM) algorithm as in MCM [8] and MFCM [16] can be
designed, and the alternate update steps are as follows:

Step 1. Credal partition (M) update.

o VAIC QA #0,

|A|*9(//3 Nd 2//5 1)
M — 32
y ZA,(#MAH_W = 1 2//? 1) +5 2/(p-1) ( )
o if A =10,
my=1-Y"m; (33)
A0

Step 2. Prototype (V) update.

The prototype o; of a specific (singleton) cluster

(i=1,2,...,c) can be updated first and then the dissimilarity
between the object and the prototype of each imprecise (meta)
clusters associated with subset A;C Q can be obtained by Eq.
(29). For singleton clusters wy (k=1,2,...,c), the corresponding
new prototypes v, (k=1,2,...,c) are set to be sample x; orderly,

with
k) xn} } ’

(34)
The dissimilarity between x; and A;, Hg is a function of v}, which is
the prototype of wy(€ A;), and it should be one of the n objects in
X ={x,%,...,%,}.

The bbas of the objects’ class membership are updated identi-
cally to ECM [32], but it is worth noting that d; has different mean-
ings and less constraints as explained before. For the prototype
updating process the fact that the prototypes are assumed to be
one of the data objects is taken into account. Therefore, when the
credal partition matrix M is fixed, the new prototypes of the clus-
ters can be obtained in a simpler manner than in the case of ECM
application. The MECM algorithm is summarized as Algorithm 1.

ZZ|A| mid}(v}), V), € {%:,%,,..

i=1 wyeh;

X = arg H}}in{

Algorithm 1. Median evidential c-means algorithm.

Input dissimilarity matrix D £ [d(x;,x;)],, ., for the n
objects {x1,Xx5,...,X,}
Parameters c: number clusters 1 <c<n

o weighing exponent for cardinality

B > 1: weighting exponent

& > 0: dissimilarity between any object to the
emptyset

y > 0: weight of dissimilarity between data
and prototype vectors

n € [0, 1]: control of the discounting degree
Choose randomly c initial cluster prototypes
from the objects

t—0

Repeat

(1. t—t+1

(2). Compute M; using Eq. (32) and (33) and
Vi

(3). Compute the new prototype set V; using
Eq. (34)

Until the prototypes remain unchanged

Initialization

Loop

The convergence of MECM algorithm can be proved in the fol-
lowing lemma, similar to the proof of median neural gas [8] and
MFCM [16].

Lemma 1. The MECM algorithm (Algorithm 1) converges in a finite
number of steps.

Proof.  Suppose 0 = (M,,V,) and 0"V = (M, 1,V ) are the
parameters from two successive iterations of MECM. We will first
prove that

Jueen(09) = Jgen(0°*Y), (35)

which shows MECM always monotonically decreases the objective
function. Let

n [y

o 2
Tueen =Y. > AP M) )

n
2 (P
+) 6%(m
i=1 A CQA#0 i=1

£33 S1MOf5 (Vo) + Y fs (M), (36)
1 ] i

where f,(M,) = [A"(m{")".f,(V,) = (d’ ), and fy(M,) = 5*(m{)’.

M, is then obtained by maximizing the right hand side of the
equation above. Thus,

>3 Y [ilMea)fo(Ve) + ) f3(Meyn) 37)
ij i
= ZZf] (Mt+1)f2(vt+1) + Zf3 (Mt+1) (38)

nzzém (39)

()
Jvieem

This inequality (37) comes from the fact M,,; is determined by dif-
ferentiating of the respective Lagrangian of the cost function with
respect to M,. To get Eq. (38), we could use the fact that every pro-
totype v, (k=1,2,...,c) in V. is orderly chosen explicitly to be

and thus this formula evaluated at V,,; must be equal to or less
than the same formula evaluated at V..

Hence MECM causes the objective function to converge mono-
tonically. Moreover, the bba M is a function of the prototypes V
and for given V the assignment M is unique. Because MECM
assumes that the prototypes are original object data in X, so there
is a finite number of different prototype vectors V and so is the
number of corresponding credal partitions M. Consequently we
can get the conclusion that the MECM algorithm converges in a
finite number of steps. O

ZZ|A| midi(v)), v, € {%1,%,,...,

i=1 wyeh;
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Remark 1. Although the objective function of MECM takes the
same form as that in ECM [32], we should note that in MECM, it
is no longer assumed that there is an underlying Euclidean dis-
tance. Thus the dissimilarity measure d; has few restrictions such
as the triangle inequality or the symmetry. This freedom distin-
guishes the MECM from ECM and RECM, and it leads to the con-
straint for the prototypes to be data objects themselves. The
distinct difference in the process of minimization between MECM
and ECM lies in the prototype-update step. The purpose of updat-
ing the prototypes is to make sure that the cost function would
decrease. In ECM the Lagrange multiplier optimization is evoked
directly while in MECM a search method is applied. As a result,
the objective function may decline more quickly in ECM as the
optimization process has few constraints. However, when the cen-
ters of clusters in the data set are more likely to be the data object,
MECM may converge with few steps.

Remark 2. Although both MECM and MFCM can be applied to the
same type of data set, they are very different. This is due to the fact
that they are founded on different models of partitioning. MFCM
provides fuzzy partition. In contrast, MECM gives credal partitions.
We emphasize that MECM is in line with MCM and MFCM: each
class is represented by a prototype which is restricted to the data
objects and the dissimilarities are not assumed to be fulfilling
any metric properties. MECM is an extension of MCM and MFCM
in the framework of belief functions.

3.3. The parameters of the algorithm

As in ECM, before running MECM, the values of the parameters
have to be set. Parameters o, f and § have the same meanings as
those in ECM, and y weighs the contribution of uncertainty to
the dissimilarity between nodes and imprecise clusters. The value
B can be set to be g =2 in all experiments for which it is a usual
choice. The parameter « aims to penalize the subsets with high car-
dinality and control the amount of points assigned to imprecise
nodes and meta classes are different, thus different values of «
should be taken even for the same data set. But both in ECM and
MECM, the higher « is, the less mass belief is assigned to the meta
clusters and the less imprecise will be the resulting partition. How-
ever, the decrease of imprecision may result in high risk of errors.
For instance, in the case of hard partitions, the clustering results
are completely precise but there is much more intendancy to par-
tition an object to an unrelated group. As suggested in [32], a value
can be used as a starting default one but it can be modified accord-
ing to what is expected from the user. The choice § is more difficult
and is strongly data dependent [32].

For determining the number of clusters, the validity index of a
credal partition defined by Masson and Denoeux [32] could be
utilized:

LSS mi)log Al + m0)log,(c)|,  (40)

N(c) & ———
nlog (0 & |,57,

where 0 < N*(c) < 1. This index has to be minimized to get the opti-

mal number of clusters. When MECM is applied to community

detection, a different index is defined to determine the number of

communities. We will describe it in the next section.

4. Application and evaluation issues

In this section, we will discuss how to apply MECM to commu-
nity detection problems in social networks and how to evaluate
credal partitions.

4.1. Evidential modular function

Assume the obtained credal partition of the graph is

M=[m;,m,,....m,"

)

where m; = (mj;, mp, ..., miC)T. Similarly to the fuzzy modularity by
Havens et al. [21], here we introduce an evidential modularity [50]:

1 S k,‘kj
Q.= WZZ Wij — wi plpl, (41)

k=1ij=1

where pl, = (ply,pl,,...,pl,)" is the contour function associated
with m;, which describes the upper value of our belief to the prop-
osition that the iy, node belongs to the k;, community.

Let PL = (ply),.., then Eq. (41) can be rewritten as:

0. - trace(PL'BPL)
¢ Wi

Q. is a directly extension of the crisp and fuzzy modularity func-
tions in Eq. (24). When the credal partition degrades into the hard
and fuzzy ones, Q. is equal to Q, and Q; respectively.

(42)

4.2. The initial prototypes for communities

Generally speaking, the person who is the center in the commu-
nity in a social network has the following characteristics: he has
relation with all the members of the group and their relationship
is stronger than usual; he may directly contact with other persons
who also play an important role in their own community. For
instance, in Twitter network, all the members in the community
of the fans of Real Madrid football Club (RMC) are following the
official account of the team, and RMC must be the center of this
community. RMC follows the famous football player in the club,
who is sure to be the center of the community of his fans. In fact,
RMC has 10,382,777 followers and 30 followings (the data on
March 16, 2014). Most of the followings have more than 500,000
followers. Therefore, the centers of the community can be set to
the ones not only with high degree and strength, but also with
neighbors who also have high degree and strength. Thanks to the
theory of belief functions, the evidential semi-local centrality ranks
the nodes considering all these measures. Therefore the initial ¢
prototypes of each community can be set to the nodes with largest
ESC values.

Note that there is usually more than one center in one commu-
nity. Take Twitter network for example again, the fans of RMC who
follow the club official account may also pay attention to Cristiano
Ronaldo, the most popular player in the team, who could be
another center of the community of RMC'’s fans to a great extent.
These two centers (the accounts of the club and Ronaldo) both
have large ESC values but they are near to each other. This situation
violates the rule which requires the chosen seeds as far away from
each other as possible [2,26].

The dissimilarity between the nodes could be utilized to solve
this problem. Suppose the ranking order of the nodes with respect
to their ESCs is n; = n, > --- > n,. In the beginning n, is set to be
the first prototype as it has the largest ESC, and then node n, is
considered. If d(n;,n,) (the dissimilarity between node 1 and 2)
is larger than a threshold g, it is chosen to be the second prototype.
Otherwise, we abandon n, and turn to check ns. The process con-
tinues until all the c prototypes are found. If there are not enough
prototypes after checking all the nodes, we should decrease u
moderately and restart the search from n,. In this paper we test
the approach with the dissimilarity measure proposed in [49].
Based on our experiments, [0.7,1] is a better experiential range of
the threshold u. This seed choosing strategy is similar to that in
[26].



K. Zhou et al./ Knowledge-Based Systems 74 (2015) 69-88 75

4.3. The community detection algorithm based on MECM

The whole community detection algorithm in social networks
based on MECM is summarized in Algorithm 2.

Algorithm 2. Community detection algorithm based on MECM.

Input: A, the adjacency matrix; W, the weight matrix (if any);
L, the threshold controlling the dissimilarity between the
prototypes; Cpin, the minimal number of communities;
Cmax, the maximal of communities; the required parameters
in original MECM algorithm

Initialization: Calculate the dissimilarity matrix of the nodes
in the graph.

repeat
(1). Set the cluster number ¢ in MECM be ¢ = cyj.

(2). Choose the initial ¢ prototypes using the strategy
proposed in Section 4.2.

(3). Run MECM with the corresponding parameters and the
initial prototypes got in (2).

(4). Calculate the evidential modularity using Eq. (42).
(5).Letc=c+1.

until c reaches at cyax.

Output: Choose the number of communities at around which
the modular function peaks, and output the corresponding
credal partition of the graph.

In the algorithm, cni, and cpax can be determined based on the
original graph. Note that ¢, > 2. It is an empirical range of the
community number of the network. If c is given, we can get a credal
partition based on MECM and then the evidential modularity can be
derived. As we can see, the modularity is a function of ¢ and it
should peak at around the optimal value of c for the given network.

4.4. Performance evaluation

The objective of the clustering problem is to partition a similar
data pair to the same group. There are two types of correct decisions
by the clustering result: a true positive (TP) decision assigns two
similar objects to the same cluster, while a true negative (TN) deci-
sion assigns two dissimilar objects to different clusters. Correspond-
ingly, there are two types of errors we can commit: a false positive
(FP) decision assigns two dissimilar objects to the same cluster,
while a false negative (FN) decision assigns two similar objects to
different clusters. Let a (respectively, b) be the number of pairs of
objects simultaneously assigned to identical classes (respectively,
different classes) by the stand reference partition and the obtained
one. Actually a (respectively, b) is the number of TP (respectively,
TN) decisions. Similarly, let ¢ and d be the numbers of FP and FN
decisions respectively. Two popular measures that are typically
used to evaluate the performance of hard clusterings are precision
and recall. Precision (P) is the fraction of relevant instances (pairs
in identical groups in the clustering benchmark) out of those
retrieved instances (pairs in identical groups of the discovered clus-
ters), while recall (R) is the fraction of relevant instances that are
retrieved. Then precision and recall can be calculated by

a a

=— R=—-—, 43

a+c a+d’ (43)
respectively. The Rand index (RI) measures the percentage of cor-
rect decisions and it can be defined as

2(a+b)

Rl*n(n—l)’

(44)

where n is the number of data objects. In fact, precision measures
the rate of the first type of errors (FP), recall (R) measures another
type (FN), while RI measures both.

For fuzzy and evidential clusterings, objects may be partitioned
into multiple clusters with different degrees. In such cases preci-
sion would be consequently low [34]. Usually the fuzzy and evi-
dential clusters are made crisp before calculating the measures,
using for instance the maximum membership criterion [34] and
pignistic probabilities [32]. Thus in the work presented in this
paper, we have hardened the fuzzy and credal clusters by maxi-
mizing the corresponding membership and pignistic probabilities
and calculate precision, recall and RI for each case.

The introduced imprecise clusters can avoid the risk to group a
data into a specific class without strong belief. In other words, a
data pair can be clustered into the same specific group only when
we are quite confident and thus the misclassification rate will be
reduced. However, partitioning too many data into imprecise
clusters may cause that many objects are not identified for their
precise groups. In order to show the effectiveness of the proposed
method in these aspects, we use the evidential precision (EP) and
evidential recall (ER):

ner nET

N, ER = N (45)
In Eq. (45), the notation N, denotes the number of pairs partitioned
into the same specific group by evidential clusterings, and n,, is the
number of relevant instance pairs out of these specifically clustered
pairs. The value N, denotes the number of pairs in the same group of
the clustering benchmark, and ER is the fraction of specifically
retrieved instances (grouped into an identical specific cluster) out
of these relevant pairs. When the partition degrades to a crisp
one, EP and ER equal to the classical precision and recall measures
respectively. EP and ER reflect the accuracy of the credal partition
from different points of view, but we could not evaluate the cluster-
ings from one single term. For example, if all the objects are parti-
tioned into imprecise clusters except two relevant data object
grouped into a specific class, EP = 1 in this case. But we could not
say this is a good partition since it does not provide us with any
information of great value. In this case ER ~ 0. Thus ER could be
used to express the efficiency of the method for providing valuable
partitions. Certainly we can combine EP and ER like RI to get the
evidential rank index (ERI) describing the accuracy:

2(a+b")
nn-1)"°

where a* (respectively, b*) is the number of pairs of objects simul-
taneously clustered to the same specific class (i.e., singleton class,
respectively, different classes) by the stand reference partition
and the obtained credal one. Note that for evidential clusterings,
precision, recall and RI measures are calculated after the corre-
sponding hard partitions are got, while EP, ER and ERI are based
on hard credal partitions [32].

EP =

ERI = (46)

Example 1. In order to show the significance of the above
performance measures, an example containing only ten objects
from two groups is presented here. The three partitions are given
in Fig. 1b-d. The values of the six evidential indices (P,R,RL,EP,ER,-
ERI) are listed in Table 1. We can see that if we simply partition the
nodes in the overlapped area, the risk of misclassification is high in
terms of precision. The introduced imprecise cluster
w12 £ {w1,w,} could enable us to make soft decisions, as a result
the accuracy of the specific partitions is high. However, if too many
objects are clustered into imprecise classes, which is the case of
partition 3, it is pointless although EP is high. Generally, EP denotes
the accuracy of the specific decisions, while ER represents the
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efficiency of the approach. We remark that the evidential indices
degrade to the corresponding classical indices (e.g., evidential
precision degrades to precision) when the partition is crisp.

5. Experiments

In this section a number of experiments are performed on clas-
sical data sets in the distance space and on graph data for which
only the dissimilarities between nodes are known. The obtained
credal partitions are compared with hard and fuzzy ones using
the evaluation indices proposed in Section 4.4 to show the merits
of MECM.

5.1. Overlapped data set

Clustering approaches to detect overlap objects which leads to
recent attentions are still inefficiently processed. Due to the intro-
duction of imprecise classes, MECM has the advantage to detect
overlapped clusters. In the first example, we will use overlapped
data sets to illustrate the behavior of the proposed algorithm.

We start by generating 2 x 100 points uniformly distributed in
two overlapped circles with a same radius R = 30 but with differ-
ent centers. The coordinates of the first circle’s center are (0,0)
while the coordinates of the other circle’s center are (30, 30). The
data set is displayed in Fig. 2a.

In order to show the influence of parameters in MECM and ECM,
different values of y,a,# and 6 have been tested for this data set.
The figure Fig. 3a displays the three evidential indices varying with
7 (o is fixed to be 2) by MECM, while Fig. 3b depicts the results of
MECM with different o but a fixed y = 0.4 (1 and 6 are set 0.7 and
50, respectively, in the tests). For fixed o and 7, the results with dif-
ferent s and ¢ are shown in Fig. 3c. The effect of o and 6 on the clus-
terings of ECM is illustrated in Fig. 3e. As we can see, for both
MECM and ECM, if we want to make more imprecise decisions to
improve ER, parameter « can be decreased. In MECM, we can also
reduce the value of parameter ) to accomplish the same purpose.
Although both o and y have effect on imprecise clusters in MECM,
the mechanisms they work are different. Parameter o tries to
adjust the penalty degree to control the imprecise rates of the
results. However, for ), the same aim could be got by regulating
the uncertainty degree of imprecise classes. It can be seen from
the figures, the effect of y is more conspicuous than «. Moreover,
although « may be set too high to obtain good clusterings, “good”
partitions can also be got by adjusting y in this case. For both
MECM and ECM, the stable limiting values of evidential measures
are around 0.7 and 0.8. Such values suggest the equivalence of the
two methods to a certain extent. Parameter # is used for
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Table 1
Evaluation indices of the partitions.
EP ER ERI P R RI
Partition 1 0.6190 0.6190 0.6444 0.6190 0.6190 0.6444
Partition 2 1.0000 0.6190 0.8222 - - -
Partition 3 1.0000 0.0476 0.5556 - - -

discounting the distance between uncertain objects and specific
clusters. As pointed out in Fig. 3¢, if y and « are well set, it has little
effect on the final clusterings. The same is true in the case of §
which is applied to detect outliers. The effect of the different values
of parameter B is illustrated in Fig. 3d. We can see that it has little
influence on the final results as long as it is larger than 1. As in FCM
and ECM, for which it is a usual choice, we use g = 2 in all the fol-
lowing experiments.

The improvement of precision will bring about the decline of
recall, as more data could not be clustered into specific classes.
What we should do is to set parameters based on our own require-
ment to make a tradeoff between precision and recall. For instance,
if we want to make a cautious decision in which EP is relatively
high, we can reduce y and «. Values of these parameters can be also
learned from historical data if such data are available.

For the objects in the overlapped area, it is difficult to make a
hard decision i.e. to decide about their specific groups. Thanks to
the imprecise clusters, we can make a soft decision. As analyzed
before, the soft decision will improve the precision of total results
and reduce the risk of misclassifications caused by simply parti-
tioning the overlapped objects into specific class. However, too
many imprecise decisions will decrease the recall value. Therefore,
the ideal partition should make a compromise between the two
measures. Set o = 1.8,7 = 0.2, = 0.7 and J = 50, the “best” (with
relatively high values on both precision and recall) clustering
result by MECM is shown in Fig. 2b. As we can see, most of the data
in the overlapped area are partitioned into imprecise cluster
w1 2 {w, ®,} by the application of MECM. We adjust the coordi-
nates of the center of the second circle to get overlapped data with
different proportions (overlap rates), and the validity indices of the
clustering results by different methods are illustrated in Fig. 4. For
the application of MECM, MCM and MFCM, each algorithm is
evoked 20 times with randomly selected initial prototypes for
the same data set and the mean values of the evaluating indices
are reported. The figure Fig. 4d shows the average values of the
indices by MECM (plus and minus one standard deviation) for 20
repeated experiments as a function of the overlap rates. As we
can see the initial prototypes indeed have effects on the final
results, especially when the overlap rates are high. Certainly, we

@ w
o W,

b. Partition 1.

@ w
#}&7 (0V5)
A wp,

d. Partition 3.

Fig. 1. An small data set with imprecise classes.
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Fig. 2. Clustering of overlapped data set.

can avoid the influence by repeating the algorithm many times. But
this is too expensive for MECM. Therefore, we suggest to use the
prototypes obtained in MFCM or MCM as the initial. In the follow-
ing experiments, we will set the initial prototypes to be the ones
got by MFCM.

As it can be seen, for different overlap rates, the classical mea-
sures such as precision, recall, and RI are almost the same for all
the methods. This reflects that pignistic probabilities play a similar
role as fuzzy membership. But we can see that for MECM, EP is sig-
nificantly high, and the increasing of overlap rates has least effects
on it compared with the other methods. Such effect can be attrib-
uted to the introduced imprecise clusters which enable us to make
a compromise decision between hard ones. But as many points are
clustered into imprecise classes, the evidential recall value is low.

Overall, this example reflects one of the superiority of MECM
that it can detect overlapped clusters. The objects in the over-
lapped area could be clustered into imprecise classes by this
approach. Other possible available information or special tech-
niques could be utilized for these imprecise data when we have
to make hard decisions. Moreover, partitions with different degree
of imprecision can be got by adjusting the parameters of the algo-
rithm based on our own requirement.

5.2. Classical data sets from Gaussian mixture model

In the second experiment, we test on a data set consisting of
3 x 50 + 2 x 5 points generated from different Gaussian distribu-
tions. The first 3 x 50 points are from Gaussian distributions
G, X)) (k = 1,2,3) with

B = (0,0)",p, = (40,40)", p; = (80,80)"
120 O )

0 120 47

&:m:m:(
and the last 2 x 10 data are noisy points follow G(u,,Z)(k = 4,5)
with

My = (~50,90)", us = (~10,130)"

80 O
24225:(0 80). (48)

MECM is applied with the following settings: o = 1,6 = 100,
n = 0.7, while ECM has been tested using o= 1.7,6 = 100 (The

appropriate parameters can be determined similarly as in the first
example). One can see from Fig. 5b and ¢, MCM and MFCM can par-
tition most of the regular data in w;,®w, and ws into their correct
clusters, but they could not detect the noisy points correctly. These
noisy data are simply grouped into a specific cluster by both
approaches. As can be seen from Fig. 5d, for the points located in
the middle part of w,, ECM could not find their exact group
and misclassify them into imprecise cluster ;3. In the figures
j £ {w;, w;} denotes imprecise clusters.

As mentioned before, imprecise classes in MECM can measure
ignorance and uncertainty at the same time, and the degree of
ignorance in meta clusters can be adjusted by y. We can see that
MECM does not detect many points in the overlapped area
between two groups if y is set to 0.6. In such a case the test objects
are partitioned into imprecise clusters mainly because of our igno-
rance about their specific classes. These objects attributed to meta
classes mainly belong to noisy data in w, and ws. The distance of
these points to the prototypes of specific clusters is large (but
not too large or they could be regarded to be in the emptyset,
see Fig. 5e). Thus the distance between the prototype vectors is rel-
atively small so that these specific clusters are indistinguishable.
Decreasing ) to be 0.2 would make imprecise class denoting more
uncertainty, as it can be seen from Fig. 5f, where many points
located in the margin of each group are clustered into imprecise
classes. In such a case, meta classes rather reflect our uncertainty
on the data objects’ specific cluster.

The table Table 2 lists the indices for evaluating the different
methods. Bold entries in each column of this table (and also other
tables in the following) indicate that the results are significant as
the top performing algorithm(s) in terms of the corresponding
evaluation index. We can see that the precision, recall and RI val-
ues for all approaches are similar except from those obtained for
ECM which are significantly lower. As these classical measures
are based on the associated pignistic probabilities for evidential
clusterings, it seems that credal partitions can provide the same
information as crisp and fuzzy ones. But from the same table, we
can also see that the evidential measures EP and ERI obtained for
MECM are higher (for hard partitions, the values of evidential
measures equal to the corresponding classical ones) than the ones
obtained for other methods. This fact confirms the accuracy of the
specific decisions i.e. decisions clustering the objects into specific
classes. The advantage can be attributed to the introduction of
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Fig. 4. Clustering of overlapped data set with different overlap rates. (d) Shows the average values of the indices (plus and minus one standard deviation) for 20 repeated
experiments, as a function of the overlap rates. For MECM o« = 1.8,7 = 0.2, = 0.7, = 50.

imprecise clusters, with which we do not have to partition the
uncertain or unknown objects into a specific cluster. Consequently,
it could reduce the risk of misclassification. However, although
ECM also deals with imprecise clusters, the accuracy is not
improved as much as in the case of applying MECM. As illustrated
before in the case of ECM application, many objects of a specific
cluster are partitioned into an irrelevant imprecise class and, as a
result, the evidential precision value and ERI decrease as well.

We also test on “Iris flower”, “cat cortex” and “protein” data
sets [12,17,22]. The first is object data while the other two are rela-
tional data sets. Thus we compare our method with FCM and ECM
for the Iris data set, and with RECM and NRFCM (Non-Euclidean
Relational Fuzzy Clustering Method [19]) for the last two data sets.
The results are displayed in Fig. 6.

Presented results allow us to sum up the characteristics of
MECM. Firstly, one can see that the behavior of MECM is similar
to ECM for traditional data. Besides, credal partitions provided by
MECM allow to recover the information of crisp and fuzzy
partitions. Moreover, we are able to balance influence of our

uncertainty and ignorance according to the actual needs. The
examples utilized before deal with classical data sets. But the supe-
riority of MECM makes it applicable in the case of data sets for
which only dissimilarity measures are known e.g. social networks.
Thus in the following experiments, we will use some graph data to
illustrate the behavior of the proposed method on the community
detection problem in social networks. The dissimilarity index used
here is the one brought forward by Zhou [49]. To have a fair com-
parison, in the following experiments, we also compare with three
classical algorithms for community detection i.e. BGLL [4], LPA [36]
and ZFCM (a fuzzy c-means based approach proposed by Zhang
et al. [46]). The obtained community structures are compared with
known performance measures, i.e., NMI (Normalized Mutual Infor-
mation), VI (Variation of Information) and Modularity.

5.3. Artificial graphs and generated benchmarks

To show the performance of the algorithm in detecting commu-
nities in networks, we first apply the method to a sample network
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Table 2 =(1.0,4.0)" =(25,5.5)" =(0.5,6.0)"

The clustering results for gaussian points by different methods. For each method, we i (1.0, ) s 23, ) = 05, )

generate 20 data sets with the same parameters and report the mean values of the Y =% — %, — 0.25 0 ( 49)

evaluation indices for all the data sets. 1 2 3 0 025/

Precision Recall RI EP ER ERI

MCM 0.7802 0.9570 09002 07802 0.9570 0.9002 Then, the edges of the graph are generated by the following thres-
MFCM 0.8616 ~ 09797 009484 0.8616 0.9797 09484 holding strategy: if |x; — x;| < dist, we set an edge between node i
FCM 08644 09820 09500 08644 09820 09500 and node j; Otherwise the two nodes are not directly connected.
ECM 0.8215 0.9353 09222 0.9069 08436 09294 The graph is shown in Fig. 7a (with dist = 0.8) and the dissimilarit
MECM (y=02) 0.8674  0.9855 0.9520 0.9993 0.7721 0.9336 grap I Fg. AR y
MECM (7 = 0.6) 0.8662 09851 09515 09958 09586 0.9868 matrix of the nodes is displayed in Fig. 7b. From the figures we can

see that there are three significant communities in the graph, and
some nodes in the bordering of their groups seem to be in over-
generated from Gaussian mixture model. This model has been used lapped classes as they contact with members in different communi-

for testing community detection approaches by Liu and Liu [29]. ties simultaneously.

The artificial graph is composed of 3 x 50 nodes, ny,n,,. .., N;so, The table Table 3 lists the indices for evaluating the results. It
which are represented by 150 sample points, X1,X;,..., X150, in shows that MECM performs well as the evidential precision result-
two-dimensional Euclidean space. There are 3 x 50 points gener- ing from its application is high. MECM utilization also results in
ated from Gaussian distributions G(p,, Z)(k = 1,2,3) with decreasing the probabilities of clustering failure thanks to the
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introduction of imprecise clusters. This makes the decision-making
process more cautious and reasonable.

The algorithms are also compared by means of Lancichinetti
et al. [28] benchmark (LFR) networks. The results of different
methods in two kinds of LFR networks with 500 and 1000 nodes
are displayed in Figs. 8 and 9 respectively. The parameter u showed
in the x-axis in the figures identifies whether the network has clear
communities. When p is small, the graph has well community
structure. In such a case, almost all the methods perform well.
But we can see that when u is large, the results by MECM have
the largest values of precision. It means that the decisions which
partition the nodes into a specific cluster are of great confidence.
In terms of NMI, the results are similar to those by BGLL and
LPA, but better than those of MCM and MFCM. This fact well
explains that the hard or fuzzy partitions could be recovered when
necessary.

5.4. Some real-world networks

5.4.1. A. Zachary’s karate club

The Zachary’s Karate Club data [45] is an The original graph and
the dissimilarity of the nodes are shown in Fig. 10a and b
respectively.

Let the parameters of MECM be o=1.56=100,
1 =0.9,7 = 0.6. The modularity functions by MECM, MCM, MFCM
and ZFCM (Fig. 12a) peak around ¢ = 2 and ¢ = 3. Let ¢ = 2, all the
methods can detect the two communities exactly. If we setc =3, a
small community, which can also be found in the dissimilarity
matrix (Fig. 10b), is separated from w; by all the approaches (see
Fig. 11). But ZFCM assigns the maximum membership to w; for
node 9, which is actually in w,. It seems that the loss of accuracy
in the mapping process may cause such results.

MECM does not find imprecise groups when y = 0.6 as the net-
work has apparent community structure, and this reflects the fact
that the communities are distinguishable for all the nodes. But
there may be some overlap between two communities. The nodes
in the overlapped cluster can be detected by decreasing y (increas-
ing the uncertainty for imprecise communities). As is displayed in
Fig. 11c and d, by declining 7 to 0.1 and 0.05 respectively (the other
parameters remain unchanged), nodes 3 and 9 are clustered into
both w; and w, (w12) one after another.

From the results we can see that MECM takes both the igno-
rance and the uncertainty into consideration while introducing
imprecise communities. The degree of ignorance and uncertainty

o o L v
Ay .
. 0 .

a. Gaussian network

could be balanced through adjusting ). The analysis shows that
there appears only uncertainty without ignorance in the original
club network. In order to show the performance of MECM when
there are noisy conditions such that some communities are indis-
tinguishable, two noisy nodes are added to the original graph in
the next experiment.

5.4.2. B. Karate club network with some added noisy nodes

In this test, two noisy nodes are added to the original karate
club network (see Fig. 13a). The first one is node 35, which is
directly connected with nodes 18 and 27. The other one is 36,
which is connected to nodes 1 and 33. It can be seen from the dis-
similarity matrix that node 36 has stronger relationships with both
communities than node 35. This is due to the fact that the nodes
connected to node 36 play leader roles in their own group, but
node 35 contacts with two marginal nodes with “small” or insignif-
icant roles in their own group only.

The results obtained by the application of different methods are
shown in Fig. 14. The MECM parameters are set as follows:
o =1.5,6 =100, = 0.9 and y is tuned according to the extent that
the imprecise communities reflect our ignorance. As we can see,
MCM, MFCM and ZFCM simply group the two noisy nodes into
;. With y = 0.4 MECM regards node 36 as a member of w; while
node 35 is grouped into imprecise community ;. And @, mainly
reflects our ignorance rather than uncertainty on the actual com-
munity of node 36. This is why node 36 is not clustered into i,
since w; and w, are distinguishable for him but we are just not
sure for the final decision. The increase in the extent of uncertainty
in imprecise communities results from the decrease of y value. We
can see that more nodes (including nodes 36,9,1,12,27, see Fig. 14e
and f) are clustered into w1, or w3 due to uncertainty. The impre-
cise communities consider both ignorance (node 35) and uncer-
tainty (other nodes).

These results reflect the difference between ignorance and
uncertainty. As node 35 is only related to one outward node of each
community, thus we are node 36 connects with the key members
(playing an important role in the community), and in this case the
dissimilarity between the prototypes of w; and w, is relatively
large so they are distinguishable. Thus there is uncertainty rather
than ignorance about which community node 36 is in. In this net-
work, node 36 is a “good” member for both communities, whereas
node 35 is a “poor” member. It can be seen from Fig. 15a that the
fuzzy partition by MFCM also gives large similar membership val-
ues to m; and w; for node 35, just like in the case of such good

b. Dissimilarity matrix

Fig. 7. Artificial network from Gaussian mixture model.
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Table 3
The results for Gaussian graph by different methods.
Precision Recall RI EP ER ERI NMI VI Modularity
MCM 0.9049 0.9110 0.9392 0.9049 0.9110 0.9392 0.8282 0.3769 0.6100
MFCM 0.9067 0.9099 0.9396 0.9067 0.9099 0.9396 0.8172 0.4013 0.6115
ZFCM 0.9202 0.9224 0.9482 0.9202 0.9224 0.9482 0.8386 0.3545 0.6118
MECM 0.9470 0.9472 0.9652 0.9789 0.6060 0.8661 0.8895 0.2428 0.6072
BGLL 0.9329 0.9347 0.9564 0.9329 0.9347 0.9564 0.8597 0.3081 0.6119
LPA 0.3289 1.0000 0.3289 0.3289 1.0000 0.3289 0.0000 1.0986 0.0000
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members as node 36 and 9. The obtained results show the problem
of distinguishing between ignorance and the “equal evidence”
(uncertainty) for fuzzy partitions. But Fig. 15b shows that the cre-
dal partition by MECM assigns small mass belief to e, and w, for
node 35, indicating our ignorance on its situation.

We also test our method on four other real-world graphs:
American football network, Dolphins network, Lesmis network

and Political books network.! The measures applied to evaluate
the performance of different methods are listed in Table 4-7. It
can been seen from the tables, for all the graphs MECM application
results in a community structure with high evidential precision

! These data sets can be found in http://networkdata.ics.uci.edu/index.php.
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a. Original karate club network b. Dissimilarity matrix

Fig. 10. Original karate club network.

o W
o 0
3

b. Clustering result of MCM, MFCM, and
MECM (y =0.1)

c. Clustering result of MECM (v = 0.1) d. Clustering result of MECM (y = 0.05)

Fig. 11. Detected communities of karate club network by different methods.
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Fig. 12. Modularity functions of karate club network by different methods.
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Fig. 13. Karate club network with two noisy nodes.

level. The precision results from a cautious decision making process
which clusters the noisy nodes into imprecise communities. In terms
of classical performance measures like NMI, VI and modularity,
MECM slightly outperforms the other algorithms. Note that these
classical measures for hard partitions are calculated by the pignistic
probabilities associated with the credal partitions provided by
MECM. Therefore, we can also see the possibility to recover the hard
decisions here when using the proposed evidential detection
approach.

5.5. Discussion

We will discuss for which application MECM is designed here.
As analyzed before, for MECM only dissimilarities between objects
are required and only the intuitive assumptions need to be
satisfied for the dissimilarity measure. Therefore, the algorithm
could be appropriate for many clustering tasks for non-metric data
objects. This type of data is very common in social sciences,

psychology, etc, where any metric assumptions about the similar-
ities/dissimilarities could not be assured. The freedom for the data
set leads to the restriction that the prototypes should be the
objects themselves. Nevertheless, this constraint seems reasonable
for social networks as the center of a community is usually the per-
son (node) frequently contacting with others. Thus the approach
can be applied to community detection problems. Thanks to the
introduction of imprecise classes, it could reduce the risk of parti-
tioning the objects which we are uncertain or ignorant into an
incorrect cluster. For this reason the algorithm can help us make
soft decisions when clustering the data set without distinct clus-
ter/community structures or with overlap.

Due to the computational complexity, the proposed algorithm is
not well directly adapted to handle very large data sets. However,
here we discuss the possibility to apply the evidential community
detection approach to large-scale networks. Firstly, the number of
parameters to be optimized is exponential and depends on the
number of clusters [32]. For the number of classes larger than 10,
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Fig. 14. Detected communities in karate club network with noisy nodes.

calculations are not tractable. But we can consider only a subclass
with a limited number of focal sets [32]. For instance, we could
constrain the focal sets to be composed of at most two classes
(except 2). Secondly, for the network with millions of nodes,
MCM or MFCM could be evoked as a first step to merge some nodes
into small clusters. After that we can apply MECM to the “coars-
ened” network. But how to define the edges or connections of
the new graph should be studied. Lastly we emphasize that the evi-
dential community detection algorithm could be utilized for gain-
ing a better insight into the network structure and detecting the
imprecise classes. For the large-scale network, it is difficult to make
specific decisions for all of nodes due to the limitation of time,

money or techniques. In this case we can use the proposed
approach to make some “soft” decisions first and then use some
techniques special for the imprecise parts of the graph.

6. Conclusion

We introduced a Median variant of Evidential C-means (MECM)
as a new prototype-based clustering algorithm in the present con-
tribution. The proposed approach is an extension of median c-
means and median fuzzy c-means. It is based on the framework
of belief function theory. The applied median-based clustering
requires the definition of the dissimilarity between the objects
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Table 4
The results for American football network by different methods.
Precision Recall RI EP ER ERI NMI VI Modularity
MCM 0.7416 0.8834 0.9661 0.7416 0.8834 0.9661 0.8637 0.6467 0.5862
MFCM 0.7583 0.8757 0.9678 0.7583 0.8757 0.9678 0.8715 0.6160 0.5745
ZFCM 0.8176 0.9082 0.9765 0.8176 0.9082 0.9765 0.9035 0.4653 0.6022
MECM 0.8232 0.9082 0.9771 0.9303 0.8681 0.9843 0.9042 0.4625 0.5995
BGLL 0.7512 0.9120 0.9689 0.7512 0.9120 0.9689 0.8903 0.5195 0.6046
LPA 0.6698 0.8298 0.9538 0.6698 0.8298 0.9538 0.8623 0.6580 0.5757
Table 5
The results for Dolphins network by different methods.
Precision Recall RI EP ER ERI NMI VI Modularity
MCM 1 1 1 1 1 1 1 0 0.3787
MFCM 1 1 1 1 1 1 1 0 0.3787
ZFCM 1 1 1 1 1 1 1 0 0.3787
MECM 1 1 1 1 1 1 1 0 0.3787
BGLL 0.9271 0.3583 0.6351 0.9271 0.3583 0.6351 0.4617 1.1784 0.5185
LPA 0.9250 0.5029 0.7070 0.9250 0.5029 0.7070 0.5595 0.8354 0.5070
Table 6
The results for Lesmis network by different methods.
Precision Recall RI EP ER ERI NMI VI Modularity
MCM 0.6109 0.5522 0.9005 0.6109 0.5522 0.9005 0.7381 1.1295 04732
MFCM 0.5774 0.6456 0.8971 0.5774 0.6456 0.8971 0.7743 0.9555 0.4705
ZFCM 0.7368 0.5769 0.9217 0.7368 0.5769 0.9217 0.7805 0.9666 0.4983
MECM 0.7065 0.7473 0.9299 0.9298 0.4368 0.9258 0.7977 0.8531 0.4884
BGLL 0.5796 0.8104 0.9033 0.5796 0.8104 0.9033 0.7551 0.9435 0.5556
LPA 0.4594 0.9643 0.8544 0.4594 0.9643 0.8544 0.7500 0.8637 0.5428
Table 7
The results for Political books network by different methods.
Precision Recall RI EP ER ERI NMI VI Modularity
MCM 0.8109 0.8030 0.8482 0.8109 0.8030 0.8482 0.5721 0.8426 0.4979
MFCM 0.8020 0.8187 0.8485 0.8020 0.8187 0.8485 0.5755 0.8256 0.4962
ZFCM 0.7928 0.7487 0.8234 0.7928 0.7487 0.8234 0.5301 0.9407 0.5048
MECM 0.7880 0.8081 0.8383 0.8458 0.6435 0.8128 0.5755 0.8247 04725
BGLL 0.8244 0.6203 0.7978 0.8244 0.6203 0.7978 0.5121 1.0987 0.5205
LPA 0.7331 0.8558 0.8200 0.7331 0.8558 0.8200 0.5612 0.7925 0.4604
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only. Therefore, it is not restricted to a metric space application.
The prototypes of the clusters are constrained to the data objects
themselves. MECM provides us with not only credal partitions
but also hard and fuzzy partitions as by-products through comput-
ing pignistic probabilities. Moreover, it could distinguish ignorance
from uncertainty while the fuzzy or crisp partitions could not. By
the introduced imprecise clusters, we could find some overlapped
and indistinguishable clusters for related nodes. Thanks to the
advantages of belief function theory and median clustering, MECM
could be applied to community detection problems in social net-
works. As other median clustering approaches, MECM tends to
get stuck in local minima such that several runs have to be
performed to obtain good performance. However, we propose an
initial prototype-selection scheme using the evidential semi-
centrality for the application of MECM in community detection
to solve the problems brought by the initial prototypes. Results
of presented experiments on artificial and real-world networks
show that the credal partitions on graphs provided by MECM appli-
cation are more refined than crisp and fuzzy ones. Therefore, they
could enable us to gain a better understanding of analyzed com-
munity structure. Some examples on the classical metric space
are also given to illustrate the interest of MECM and to show its
difference with respect to the existing methods.

As mentioned in this paper, there may be more than one center
in each community network. Nevertheless, we ignore “multi-cen-
ter” to avoid the troubles brought by the need for an initial seed
using ESC and the definition of a threshold to control the distance
between prototypes. We are aware that this is a drawback of the
presented approach as not all the centers in each community are
taken into consideration. Therefore, we intend to include the fea-
ture of multiple centers in our future research work.
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