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Abstract — In this paper we applied Fusion algorithm in a
passive Ocean Acoustic Tomography context. We applied
several types of independent component analysis algorithms
on a large number of realistic data and we propose to classify
their respective outputs according to the principal properties
of the opportunity sources. Finally, we apply a fusion’s
model: the Belief functions theory to outperform the Blind
Source Separation/Classification approach.

I. INTRODUCTION

Acoustic tomography initially developed by Munk et
Wunsch [1], is a way to produce a fast, accurate and low
cost monitoring of water mass. This monitoring requires an
inversion procedure made with two steps. The first one is
to estimate acoustic properties (such as the sound speed
profile of the water column) from the measurement of a
propagated known acoustic waveform between fixed
sources and receivers. Then a second step consists in
inferring some physical ocean parameters (temperature,
bottom nature) from these previous estimated acoustic
characteristics. Large scales deep water and small scales
shallow water configurations were successfully studied and
associated with matched delay, matched field and matched
impulse response inversion processing.

Accurate estimates of acoustic properties demand the
emission of powerful and recurrent signals in the adapted
bandwidth and in agreement with the scale of the
monitoring. But we would rather not send these hard active
sounds through the water column in a potential (would-be)
military underwater warfare context, or if mammal species
health is considered. A recent solution has emerged in the
community to tackle this problem with the passive
tomography processing. Passive tomography processing
consists in estimating acoustic properties by using
opportunity sources present in the channel at the time of
interest. Some experimentations were recently carried out
using ships, marine mammals and surface noises [2] [3] [4]

[3].

To perform at sea and real time passive tomography of
an underwater channel and to take into account the loss of
a priori information (unknown emitted signal and location
of sources) and difficulties such as several moving sources
at the same time, a strategy for fusion approach and data
analysis is proposed in this paper.

In the channel, a huge kind of opportunity sources can
be found. Depending on those sources properties, the
inversion step will be different. For instance, Jesus in [2]
used narrow band boat noises to invert geoacoustic
parameters and on an other hand, in [6] C.Gervaise used
broad band marine mammals vocalizes to estimate the
impulse response of the channel.

That is why we propose a strategy which consists in
separating the different sources using ICA (Independent
Component Analysis) algorithms and then classifying
those sources according to their main properties
(Bandwidth, stationnarity...). To do that, we propose to
use some information fusion approaches in order to
outperform the classification and ICA algorithms for Blind
Source Separation (BSS). Indeed, Fusion approach, allows
for a representation of both imprecision and uncertainty,
that is why according to each ICA algorithm we will be
able to model their performances and to increase the global
performance of the method by combining several outputs.
Finally, thanks to this approach we will be able to direct
signals towards the adapted inversion stage which depend
on their properties.

The figure 1 summarises the strategy we retained in
this paper
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Fig. 1. Synoptic of our approach

In the first paragraph of this paper, we present the
sources separation algorithms we used and related
assumptions we made. The second paragraph is dedicated



to the way we classify signals according to their main
properties. The section III presents information Fusion
method we chose to apply, this technique is based on the
Belief function theory and the masses are calculated thanks
to the distances method.

Finally in the last part of this paper we present how we
constitute our database of mixtures and some simulation
results obtained with the synthetic realistic data we created.

II. SOURCES SEPARATION

In real world, several sources of opportunity can be
found in the same channel. Up to now, most of the acoustic
ocean tomography algorithms assumes the existence of just
one source at same time (or at least the different sources
don’t have the same signature in the time-frequency
plan). For these reason, we should firstly separate the
different sources according to their properties
(time-frequency or statistical properties). This situation is
similar to BSS (Blind Source Separation) problem. To
solve BSS problem, researchers use Independent
Component Analysis (ICA) techniques [7].

Let us consider  independent signals s, (¢),...., s, (¢),
in the following these signals are called sources, observed
by using n sensors, and let X, (?),...., X, (¢#) denotes the
observed (mixed) signals, then for memory-less channel
(instantaneous mixtures) one can write

X(1) = As(t) @.1)

The BSS problem consists in retrieving the sources by
only using the observed data x(7). In general case, three
main assumptions are considered to solve the BSS
problem:

- The sources are statistically independent

- The matrix 4 is a full rank matrix.

- Atmost one of the sources can be Gaussian

Our experimental studies show that these assumptions
can be applied for some acoustic signals and channel.
Under water channel can be consider as multiple paths (i.e.
the signal received on the hydrophones can be seen as an
attenuated and delayed version of the emitted one):

y(n) = f C.s(n—1,)+b(n)

Where M denotes the number of paths of the channel,
C; a real gain and b denotes an additive white Gaussian
noise.
We can also rewrite this equation in a matrix form by
introducing H which denotes the impulse response of the
channel.

2.2)

M
Y(n)=> H(@i)S(n—i)+B(n) (23)
i=0
The previous equation is called a convolutive mixture
model. At first, we considered a simplified model i.e.
Instantaneous mixtures (memory-less channel). The
instantaneous mixture model can be applied in the deep
channel when the sources and the sensors are far enough
(depending on the channel as well the waves properties)
from the water surface as well as from the bottom of the
channel.

Many ICA algorithms for instantaneous mixtures can
be found in the literature. Most of them are dedicated to

some specific applications. In [8], some ICA algorithms
have been considered to deal with natural and artificial
acoustic sounds. Among these algorithms, we focus on
two particular criteria and algorithms which gave us the
best performances: Jade [9] is a simultaneous
diagonalization of the eigen matrices of a fourth order
cross cumulant tensor. The second criteria are presented in
FFPA [10] [11] (Fast Fixed point Algorithm), three
versions are considered according to different nonlinearity
used in FFPA. The main idea of FFPA consists on
minimizing a cross normalized fourth order cumulants
using a fixed point minimization algorithm.

Figure 2, shows the experimental results obtained by
applying FFPA on underwater acoustic signals. In that
figure, we present the spectrograms of the sources, the
mixed signals and the separated ones. The two sources are:
a marine mammal (Short-Finned Pilot whale vocalize) and
an artificial sound (LFM).
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III CORRELATION/ FEATURE EXTRACTION
A. Correlation

We mentioned earlier that the BSS literature is full, of
many algorithms, many applications and divers
possibilities. In our experimental studies, we couldn’t
found the best algorithm for all type of sources and/or
channels.

87 52
¥ ¥

Miming model

correlation

Fig. 3. Correlation principle

For this reason, we consider hereinafter the following
strategy, see figure 3: By considering the output signals of



many ICA algorithms and by using some classification and
fusion techniques, can we improve the total performances?
To answer this question, one should be able to consider an
estimated signal as the most “similar” (according to some
criteria) output signals of the different ICA algorithms. On
the other hand, it is well known that the separated signals
are the sources up to a scale factor and a permutation [7].
As the sources are independent form each other, we
considered a “similarity” criteria based on a normalized
cross-correlation.

B. Feature Extraction

In the second section of this paper, we present the
source separation algorithms we used, moreover, as we
mentioned in the introduction, our goal consists in
directing the different signals towards the inversion
schemes which are related to their respective properties. To
perform this task, we need a feature extraction stage.

By studying the different kind of signals existing in the
channel, we chose to fix 4 possible classes of signals
depending on their principal properties:

- Wide band stationary signals

- Narrow band stationary signals

- Wide band nonstationary signals (frequency modulated
signal, marine mammals vocalizes for instance)

- Narrow band nonstationary signals (i.e. Transitory
impulsionnal signals, snapping shrimps for instance)

We chose to perform the classification at the same time
than fusion by using the belief functions theory with some
mass functions calculated by a distances approach. This
idea is developed in the fourth section of this paper.

By choosing this way to perform the classification, we
have to extract from our signals relevant features which
could be used to calculate some distances between a
signal’s features and an other signal contained in a learning
database ones.

To extract relevant features, we used two approaches.
The first one is a simple signal processing approach and
the second one is classic in speech recognition
applications.

Actually, to evaluate if a signal is broad or narrow band,
we simply calculated its bandwidth B by the equation (3.1)
and (3.2):

[fr(Hdr
Seonrat = 0.)07 3.1
[7.(Hdr
[ = Fronwa 7S
B= |2 (3.2)
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Moreover, to evaluate if a signal is stationary or not, we
calculated its central frequency in a moving window of
fixed larger. Then, we were able to observe the evolution
of the central frequency which allowed us to see if a signal
is stationary or not.

Finally, this simple

signal processing approach

provides us two relevant features.
We also extract other features, to provide comparison with
features currently used in speech recognition applications,
we provide results obtained by using 13 Mel-frequency
cepstral coefficients (MFCCs). We do not detailed the way
to obtain those features in this paper, interested readers
would see [12] for more details. Those cepstral coefficients
obtained with a Mel-frequency scale filter bank which has
been defined according to human perception specificity are
well adapted to speech recognition application but not
necessarily to underwater acoustics signals classification.
The figure n°4 presents the synoptic to obtain the
MFCC’s:

cigndl | Hamming }. FFT | o[ Toa| |-+ FFT7 Ly mmce
f

Filter hank

Mel Scale

ﬁaw.xym.}.ﬂ.. AMAAAAA
HINHHITINS S '@ &
MO

1] 1 4 Mreqikdlay

wright

2 3
MFCC Filers

Fig. 4. MFCC’s extraction synoptic

IV FUSION BY BELIEF FUNCTIONS THEORY

In this paragraph, we briefly describe the theory of the
fusion model we apply in this paper.

The belief functions theory allows for a representation
of both imprecision and uncertainty through two functions:
plausibility and belief [13, 14]. Both functions are derived
from a mass function defined on each subset of the space
of discernment D={C,, ..., C,} (i.e. 2°) onto [0,1], such
that:

D> m(4)=1

Ac D

A1)

The first difficulty is the choice of a mass function.
There are several approaches in the literature, but in this
paper we apply the Denoeux Distances Method. Indeed
this method use a classification by the k-nearest neighbors
scheme which allow us to avoid using a specific classifier.
Actually, in [13], Denoeux defined the mass functions by:

m'({C.} xO x) = @, 0,(d)
m; (D/x(’))(x) =1- a;p, (d(’))

4.2)

where  x' corresponds to a learning vector,
d" =d(x",x)is a distance (to be fixed) between x and
x and C,is the class of x'; @,is a distance function
which verifies:

¢i(0) =1
lim dlim 9.(d)=0

(4.3)
Many distance function can be used, we will use the
function proposed in [13] by Denoeux:

; (d)= exp(—Vidz) 4.4)



where V; corresponds to a positive parameter according to
the class C,. This function is well adapted to the
Euclidean distance. If the training database is important,
the distances calculation can take time, in our application
we will focus on the & nearest neighbors to limit this
calculation time.

The second step of fusion is the combination. There are
several conjunctive rules proposed in the literature to
perform this combination. In this article, we used the
Smets rule one [14] which is nowadays the most
widespread one.

mo= Y [Im®)

Bin.B,=d%p j=1

m)= Y [m, 8,

Bin.B,=¢ j=I

4.5)

In the distance approach, this combination can be written
by:

e =11 Tlo-apa |

tel;

[TII0-a,0.@") (4.6)
r#i el ;
; 1 m
m (D)) = T[T]0-,0.@")
r=l tely ;
With L a normalized constant and {;,; the set of

neighbors of x in the class C,.

The last step of fusion is the decision. In the belief
functions theory, we can use the maximum of plausibility,
maximum of belief or maximum of pignistic probability. In
this article, we use the maximum of pignistic probability
proposed by Smets [14] which constitutes a good
compromise between the plausibility and belief maximum.

V SIMULATION RESULTS
A. Database

To improve our algorithms, we constructed a database
of realistic synthetic mixtures.

We used several signals of marine mammals, ships and
ambient noise founded on the web and in two oceanic
campaigns: the first one, TINA2001 1is an active
Tomographic campaign performed by the SHOM (Service
Hydrographique et Océanographique de la Marine) and
the other one, was performed by ISMER (Institut des
Sciences de la Mer) from the University of Quebec at
Rimousky (UQAR) in order to locate Belugas in the Saint
Laurentian  Channel. The descriptions of those
experimentations can be found respectively in [15] and in
[16].

We decided to use a shallow water environment with a
simplified celerity profile and a sediment layer
corresponding to the TINA campaign. The figure 5 is a
representation of the model we retained.
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Fig. 5. Model of Channel used to construct our database

To construct realistic mixture matrices, we used the
software Bellhop developed to simulate the rays
propagation model. We used the retained channel
described in the figure 5, thus, thanks to this software, we
were able to consider a source in the channel and to obtain
the Transmission Loss due to propagation between the
opportunity source and the receivers. On the figure 6, we
present an example of the transmission loss obtained with a
10m-depth source.
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Fig. 6. Transmission Losses (dB) obtained with Bellhop for a
configuration corresponding to the figure 5

Moreover, to construct our different mixture matrix, we
need the knowledge of the sources of opportunity‘s
emission levels. We found those levels in the literature
[17]. We resumed it in the table 1.

We put three receivers in the channel in order to sample
it. The first one at Sm depth, the second at 50m depth and
the third one at 120m depth. And finally, by combining the
source emission levels, the transmission losses and by
using several sources proofs and ranges we were able to
obtained a large number of realistic synthetic mixture
matrix.

Actually, we created above 200 mixtures by
considering 2, 3 or 4 sources moving in the channel. We
created a 80 signals learning database and a 120 signals
test database.



TABLE 1: OPPORTUNITY SOURCES EMISSION LEVELS

1m0, O D tn e el

Opportunity Sources Frequency (Hz) Source Level TABLE 2: CLASSIFICATION MEAN RATE WITH TWO
(dB re 1uPa-m)
Trawlers 100 158 PARAMETERS
Tanker (5) 430/60/33/8 ICONIBONIBII8S | 1cA1  1CA2  ICA3  ICA4 Belief functions theory
Twin diesels ships 630 159
Active Tomography Chirp 300-1000 177 74.1 73.6 72.08 72.3 76.4
Dolphins 0.8-24 125-173
Echolocation,: 23-67 kHz 180
Sperm Whales Clcks: 2-4Khz; 10-16 kHz 160-180 resulats aprés classHusion pour MFGE | e DA 1
Beluga Vocalizations 0.5-169 160-180 e
kHz a0
Echolocation: 206-225 o
40-60;100-120 kHz 5
Dwarf minke whale Grunts: 60-140 155-175 % e
Killer Whale 12-25KHz 180 3 so
False Killer Whale 25-30; 95-130 kHz 220-228 E
Humpback whales Song :30-8000 144-174 ”*
Pulse trains:25-1250 179-181 ke
Short-finned pilot whale 30-60 kHz 180 =0 . . . . . . . .
o 2 4 B 8 10 12 14 16 18 20
Harbour Porpoise Clicks 0.04 —12 120-148 tests
Echolocation 110-150 135-177 Fig. 8. Classification rate obtained with 13 MFCC’s
Snapping shrimps 2to 9 KHz 189
TABLE 3: CLASSIFICATION MEAN RATE WITH 13 MFCC’s (%).
B.  Results

In this section, we present some results obtained by
applying our classification/fusion approach on the outputs
of the four ICA’s algorithms described in the section II.
The figure 7 et 8 present a comparison between rates of
good classification obtained with ICA’s algorithms with
the k& nearest neighbours and rates of good classification

obtained with

the fusion approach. The

figure 7

corresponds to the case of two parameters and the figure 8
corresponds to the results obtained with the 13 MCFF’s.
We repeat the training 20™ times in order to achieve a

ICA1 ICA2 ICA3 ICA 4 Belief functions theory

good estimator of the classification rate. The strait lines in
the figure 7 and 8 correspond to the mean rates of good
classification which are also explained respectively in the
table 2 and 3.
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Fig. 7. Classification rate obtained with band and stationary
parameters

55.2 57.09 59.12 67.41 71.6

You can note on those two figures that the fusion
model give better results in mean than every individual
ICA/k-nearest neighbors algorithm. The improvement of
the Belief functions theory is thus statistically significant
(between 4 and approximately 10 percents depending on
the features we retained), but not still really determinant.
We hope to obtain better results with a better knowledge of

the truth, i.e. with better learning and test data bases.
VI CONCLUSION AND FUTURE WORKS

We have used four ICA algorithms based on different
principles or on different parameterizations. These
algorithms allow quite good performances, but those
performances are not similar according to the type of
sources. So, we have used a fusion approach: Belief
functions theory based on the distance method. This
approach outperform the results of each ICA/classifier
approach separately.

We mentioned, that the ICA algorithms are currently
being adapted to convolutive mixtures, thus we will soon
be able to perform simulation much closer from reality.
Moreover, our Tomography team is currently working on
other approaches to separate sources (Time-Frequency and
Time-Frequency-Space approaches). So, as future work,
we would like to apply our Classification/Fusion approach
to several source separation methods.
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