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Abstract Hidden Markov Models (HMMs) are learning methods for pattern recog-
nition. The probabilistic HMMs have been one of the most used techniques based on
the Bayesian model. First-order probabilistic HMMs were adapted to the theory of
belief functions such that Bayesian probabilities were replaced with mass functions.
In this paper, we present a second-order Hidden Markov Model using belief func-
tions. Previous works in belief HMMs have been focused on the first-order HMMs.
We extend them to the second-order model.

1 Introduction

A Hidden Markov Model (HMM) is one of the most important statistical models in
machine learning [11]. A HMM is a classifier or labeler that can assign label or class
to each unit in a sequence [8]. It has been successfully utilized over several decades
in many applications for processing text and speech such as Part-of-Speech (POS)
tagging [9], named entity recognition [24] and speech recognition [5]. However,
such works in the early part of the period are mainly based on first-order HMMs. As
a matter of fact, the assumption in the first-order HMM, where the state transition
and output observation depend only on one previous state, does not exactly match
with the real applications [10]. Therefore, they require a number of sophistications.
For example, even though the first-order HMM for POS tagging in early 1990s
performs reasonably well, it captures a more limited amount of the contextual infor-
mation than is available [22]. As consequence, most modern statistical POS taggers
use a second-order model [2].
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Uncertainty theories can be integrated in statistical models such as HMMs: The
probability theory has been used to classify units in a sequence with the Bayesian
model. Then, the theory of belief functions is employed to this statistical model.
This theory can provide rules to combine evidences from different sources to arrive
at a certain degree of belief [17, 23, 20, 3, 19]. First-order belief HMMs introduced
in [12, 15, 6, 14], use combination rules proposed in the framework of the theory
of belief functions. This paper is an extension of previous ideas for second-order
belief HMMs. For the current work, we focus on our efforts to explain a second-
order model. However, the proposed method can be easily extended to higher-order
models.

The rest of the paper is organized as follows: In Sections 2 and 3, we detail prob-
abilistic HMMs for the problem of POS tagging where HMMs have been widely
used. Then, we describe the first-order belief HMM in Section 4. Finally, before
concluding, we propose the second-order belief HMM.

2 First-order probabilistic HMMs

POS tagging is a task of finding the most probable estimated sequence of n tags
given the observation sequence of v words. According to [11], a first-order proba-
bilistic HMM can be characterized as follows:

N The number of states in a model S = {st
1,s

t
2, · · · ,st

N}.
M The number of distinct observation symbols. V = {v1,v2, · · · ,vM}.
A = {ai j} The set of N transition probability distributions.
B = {b j(ot)} The observation probability distributions of in state j.
π = {πi} The initial probability distribution.

Figure 1 illustrates the first-order probabilistic HMM allowing to estimate the
probability of the sequence st−1

i and st
j where ai j is the transition probability from

st−1
i to st

j and b j(ot) is the observation probability on the state st
j. Regarding POS

tagging, the number of possible POS tags that are hidden states S of the HMM
is N. The number of words in the lexicons V is M. The transition probability ai j

is the probability that the model moves from one tag st−1
i to another tag st

j. This
probability can be estimated using a training data set in supervised learning for
the HMM. The probability of a current POS tag appearing in the first-order HMM
is dependent only on the previous tag. In general, first-order probabilistic HMMs
should be characterized by three fundamental problems as follows [11]:

• Likelihood: Given a set of transition probability distribution A, an observation
sequence O = o1,o2, · · · ,oT and its observation probability distribution B, how
do we determine the likelihood P(O|A,B)? The first-order model relies on only
one observation where b j(ot) = P(o j|st

j) and the transition probability based on
one previous tag where ai j = P(st

j|s
t−1
i ). Using the forward path probability, the

likelihood αt( j) of a given state st
j can be computed by using the likelihood

αt−1(i) of the previous state st−1
i as described below:
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αt( j) = ∑
i

αt−1(i)ai jb j(ot) (1)

• Decoding: Given a set of transition probability distribution A, an observation
sequence O = o1,o2, · · · ,oT and its observation probability distribution B, how
do we discover the best hidden state sequence? The Viterbi algorithm is widely
used for calculating the most likely tag sequence for the decoding problem. The
Viterbi algorithm can calculate the most probable path δt( j) which contains the
sequence of ψt( j). It can select the path that maximizes the likelihood of the
sequence as described below:

δt( j) = maxδt−1(i)ai jb j(ot)
ψt( j) = argmaxψt−1(i)ai j

(2)

• Learning: Given an observation sequence O = o1,o2, · · · ,oT and a set of states
S = {st

1,s
t
2, · · · ,st

N}, how do we learn the HMM parameters for A and B? The pa-
rameter learning task usually uses the Baum–Welch algorithm which is a special
case of the Expectation-Maximization (EM) algorithm.

In this paper, we focus on the likelihood and decoding problems by assuming a
supervised learning paradigm where labeled training data are already available.

3 Second-order probabilistic HMMs

Now, we explain the extension of the first-order model to a trigram1 in the second-
order model. Figure 2 illustrates the second-order probabilistic HMM allowing to
estimate the probability of the sequence of three states st−2

i , st−1
j and st

k where ai jk is
the transition probability from st−2

i and st−1
j to st

k, and bk(ot) is the observation prob-
ability on the state st

k. Therefore, second-order probabilistic HMMs is characterized
by three fundamental problems as follows:

• Likelihood: The second-order model relies on one observation bk(ot). Unlike the
first-order model, the transition probability is based on two previous tags where
ai jk = P(st

k|s
t−2
i , st−1

j ) as described below:

αt(k) = ∑
j

αt−1( j)ai jkbk(ot) (3)

However, it will be more difficult to find a sequence of three tags than a sequence
of two tags. Any particular sequence of tags st−2

i , st−1
j , st

k that occurs in the test
set may simply never have occurred in the training set because of data sparsity
[8]. Therefore, a method for estimating P(st

k|s
t−2
i ,st−1

j ), even if the sequence st−2
i ,

st−1
j , st

k never occurs, is required. The simplest method to solve this problem is to
combine the trigram P̂(st

k|s
t−2
i ,st−1

j ), the bigram P̂(st
k|s

t−1
j ), and even the unigram

P̂(st
k) probabilities [2]:

1 The trigram is the sequence of three elements, i.e. three states in our case.
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P(st
k|st−2

i ,st−1
j ) = λ1P̂(st

k|st−2
i ,st−1

j )+λ2P̂(st
k|st−1

j )+λ3P̂(st
k) (4)

Note that P̂ is the maximum likelihood probabilities which are derived from the
relative frequencies of the sequence of tags. Values of λ are such that λ1 +λ2 +
λ3 = 1 and they can be estimated by the deleted interpolation algorithm [2].
Otherwise, [22] describes a different method for values of λ as below:

λ1 = k3
λ2 = (1− k3) · k2
λ3 = (1− k3) · (1− k2)

(5)

where k2 =
log(C(st−1

j ,st
k)+1)+1

log(C(st−1
j ,st

k)+1)+2
, k3 =

log(C(st−2
i ,st−1

j ,st
k)+1)+1

log(C(st−2
i ,st−1

j ,st
k)+1)+2

, and C(st−2
i ,st−1

j ,st
k) is the fre-

quency of a sequence st−2
i ,st−1

j ,st
k in the training data. Note that λ1 +λ2 +λ3 is

not always equal to one in [22]. The likelihood of the observation probability for
the second-order model uses B where bk(ot) = P(ok|st

k,s
t−1
j ).

• Decoding: For second-order model we require a different Viterbi algorithm. For
a given state s at the time t, it would be redefined as follows [22]:

δt(k) = maxδt−1( j)ai jkbk(ot)
where δt( j) = maxP(s1,s2, · · · ,st−1 = si,st = s j,o1,o2, · · · ,ot)

ψt(k) = argmaxψt−1( j)ai jk
where ψt(k) = argmaxP(s1,s2, · · · ,st−1 = si,st = s j,o1,o2, · · · ,ot)

(6)

• Learning: The problem of learning would be similar to the first-order model ex-
cept that parameters A and B are different.

With respect to performance measures, different transition probability distribu-
tions in [2] and [22] obtain 97.0% and 97.09% tagging accuracy for known words,
respectively for the same data (the Penn Treebank corpus). Even though probabilis-
tic HMMs perform reasonably well, belief HMMs can learn better under certain
conditions on observations [6].

4 First-order Belief HMMs

In probabilistic HMMs, A and B are probabilities estimated from the training data.
However, A and B in belief HMMs are mass functions (bbas) [12, 6].2 According to
previous works on belief HMMs, a first-order HMM using belief functions can be
characterized as follows:

N The number of states in a model Ωt = {St
1,S

t
2, · · · ,St

N}.
M The number of distinct observation symbols V .
A = {mΩt

a [St−1
i ](St

j)} The set of conditional bbas to all possible subsets of states.
B = {mΩt

b [ot ](St
j)} The set of bbas according to all possible observations Ot .

π = {mΩ1
π (SΩ1

i )} The bbas defined for the the initial state.

2 We use commonality functions to simplify computations, but plausibility, belief, and mass func-
tions can also be used.
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Difference between the first-order probabilistic and belief HMMs is presented in
Figure 1, the transition and observation probabilities in belief HMMs are described
as mass functions. Therefore, we can replace ai j by mΩt

a [St−1
i ](St

j) and b j(ot) by

mΩt
b [ot ](St

j). The set Ωt has been used to denote states for HMMs using belief func-
tions [12, 6]. Note that st

i is the single state for probabilistic HMMs and St
i is the

multi-valued state for belief HMMs. First-order belief HMMs should also be char-
acterized by three fundamental problems as follows:

• Likelihood: The likelihood problem in belief HMMs is not solved by likelihood,
but by using the combination. The first-order belief model relies on (i) only one
observation mΩt

b [ot ](St
j) and (ii) a transition conditional mass function based on

one previous tag mΩt
a [St−1

i ](St
j). Mass functions of sets A and B are combined us-

ing the Disjunctive Rule of Combination (DRC) for the forward propagation and
the Generalized Bayesian Theorem (GBT) for the backward propagation [18].
Using the forward path propagation, the mass function of a given state St

j can
be computed as the combination of mass functions on the observation and the
transition as described below:

qΩt
α (St

j) = ∑mΩt−1
α (St−1

i ) ·qΩt
a [St−1

i ](St
j) ·q

Ωt
b (St

j) (7)

Note that the mass function of the given state St
j is derived from the commonality

function qΩt
α .

• Decoding: Several solutions have been proposed to extend the Viterbi algorithm
to the theory of belief functions [12, 16, 13]. Such solutions maximize the plau-
sibility of the state sequence. In fact, the credal Viterbi algorithm starts from the
first observation and estimates the commonality distribution of each observation
until reaching the last state. For each state St

j, the estitmated commonality distri-

bution (qΩt
δ
(St

j)) is converted back to a mass function that is conditioned on the
previous state. Then, we apply the pignistic transform to make a decision about
the current state (ψt(st

j)):

qΩt
δ
(St

j) = ∑St−1
i ⊆At−1 mΩt−1

δ
(St−1

i ) ·qΩt
a [St−1

i ](St
j) ·q

Ωt
b (St

j)

ψt(st
j) = argmaxSt−1

i ∈Ωt−1
(1−mΩt

δ
[St−1

i ]( /0)) ·Pt [St−1
i ](St

j)
(8)

where At = ∪St−1
j ∈Ωt

ψt(St
j) [12].

• Learning: Instead of the traditional EM algorithm, we can use the E2M algorithm
for the belief HMM [14].

To build belief functions from what we learned using probabilities in the previous
section, we can employ the least commitment principle by using the inverse pignistic
transform [21, 1].
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5 Second-order Belief HMMs

Like the first-order belief HMM, N, M, B and π are similarly defined in the second-
order HMM. The set A is quite different and is defined as follows:

A = {mΩt
a [St−2

i ,St−1
j ](St

k)} (9)

where A is the set of conditional bbas to all possible subsets of states based on the
two previous states. Second-order belief HMMs should also be characterized by
three fundamental problems as follows:

• Likelihood: The second-order belief model relies on one observation mΩt
b [ot ](St

k)
in a state Sk at time t and the transition conditional mass function based on
two previous states St−2

i and St−1
j , defined by mΩt

a [St−2
i ,St−1

j ](St
k). Using the

forward path propagation, the mass function of a given state St
k can be com-

puted as the disjunctive combination (DRC) of mass functions on the transition
mΩt

a [St−2
i ,St−1

j ](St
k) and the observation mΩt

b (St
k) as described below:

qΩt
α (St

k) = ∑mΩt−1
α (St−1

j ) ·qΩt
a [St−2

i ,St−1
j ](St

k) ·q
Ωt
b (St

k) (10)

where qΩt
a [St−2

i ,St−1
j ](St

k) is the commonality function derived from the con-
junctive combination of mass functions of two previous transitions. The com-
bined mass function mΩt

a [St−2
i ,St−1

j ](St
k) of two transitions mΩt−1

a [St−2
i ](St−1

j ) and
mΩt

a [St−1
j ](St

k) is defined as follows:

mΩt
a [St−2

i ,St−1
j ](St

k) = mΩt−1
a [St−2

i ](St−1
j ) ∪© mΩt

a [St−1
j ](St

k) (11)

The conjunctive combination is required to obtain the conjunction of both tra-
sitions. Note that the mass function of the given state St

k is derived from the com-
monality function qΩt

α . We use DRC with commonality functions like in [12].
However, the same rule is defined using other functions [18].

• Decoding: We accept our assumption of the first-order belief HMM for the
second-order model. Similarly to the first-order belief HMM, we propose a so-
lution that maximizes the plausibility of the state sequence. The credal Viterbi
algorithm estimates the commonality distribution of each observation from the
first observation till the final state. For each state St

k, the estitmated commonality
distribution (qΩt

δ
(St

k)) is converted back to a mass function that is conditioned on
a mass function of the two previous states. This mass function is the conjunctive
combination of mass functions of the two previous states. Then, we apply the
pignistic transform to make a decision about the current state (ψt(st

j)) as before:

qΩt
δ
(St

k) = ∑St−1
j ⊆At−1 mΩt−1

δ
(St−1

j ) ·qΩt
a [St−2

i ,St−1
j ](St

k) ·q
Ωt
b (St

k)

ψt(st
k) = argmaxSt−1

j ∈Ωt−1
(1−mΩt

δ
[St−1

j ]( /0)) ·Pt [St−2
i ,St−1

j ](St
k)

(12)



Second-order Belief HMMs 7

st−1
i

stj

bj(ot)

aij
St−1
i

St
j

mΩt

b [ot]

mΩt
a [St−1

i ]

Fig. 1 First-order probabilistic and belief HMMs

st−2
i st−1

j stk

bk(ot)

aij ajk

aijk

St−2
i

St−1
j St

k

mΩt

b [ot]

mΩt
a [St−1

j ]m
Ωt−1
a [St−2

i ]

mΩt
a [St−2

i , St−1
j ]

Fig. 2 Second-order probabilistic and belief HMMs

• Learning: Like the first-order belief model, we can still use the E2M algorithm
for the belief HMM [14].

Since the combination of mass functions in the belief HMM is required, we do
not need to refine the observation probability for the second-order model as in the
second-order probabilistic model.

6 Conclusion and future perspectives

The problem of POS tagging has been considered as one of the most important tasks
for natural language processing systems. We dealt with such a problem based on
HMMs and tried to apply our idea to the theory of belief functions. We extended
previous work on belief HMMs to the second-order model. Using the proposed
method, we will be able to easily extend the higher-order model for belief HMMs.
Some technical aspects still remain to be considered. Robust implementation for be-
lief HMMs are required where in general we can find over one million observation
in the training data to deal with the problem of POS tagging. As described before,
the choice of inverse pignistic transforms would be empirically verified.3 We are
planning to implement these technical aspects in near future.

The current work is described to rely on a supervised learning paradigm from
labeled training data. Actually, the forward-backward algorithm in HMMs can do
completely unsupervised learning. However, it is well known that EM performs
poorly in unsupervised induction of linguistic structure because it tends to assign

3 For example, [4] used the inverse pignistic transform in [21] to calculate belief functions from
Bayesian probability functions. As matter of fact, the problem of POS tagging can be normalized
and inverse pignistic transforms in [21] did not propose the case for m( /0).
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relatively equal numbers of tokens to each hidden state [7].4 Therefore, the initial
conditions can be very important. Since the theory of belief functions can take into
consideration of uncertain and imprecision, especially for the lack of data, we might
obtain a better model using belief functions on an unsupervised learning paradigm.
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