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Abstract - Distances between fusion operators are

measured using a class of random belief functions.

With similarity analysis, the structure of this family

is extracted, for two and three information sources.

The conjunctive operator, quick and associative but

very isolated on a large discernement space, and

the arithmetic mean are identified as outliers, while

the hybrid method and six proportional conflict-

redistributing rules (PCR) form a continuum. The

hybrid method is showed as being central for the fam-

ily of fusion methods. All the fusion operators tested

with random belief functions are validated on the fu-

sion of radar data classifiers, and show the interest

of some new PCR methods.
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1 Introduction

The Dempster-Shafer theory has given birth to a large
family of operators, making the fusion between two or
more belief functions. Two different operators will very
often build two different belief functions from the same
entries. They will be reduced later in the treatment
chain to a simple decision. Usually one will consider
some function defined on the inclusion lattice (credi-
bility, plausibility or pignistic probability) and take its
maximum on the discernment space, an anti-chain of
the lattice.

Usually, both discernment space and focal elements
of the belief functions are just the singletons of Θ. In
this situation, we can measure the difference between
fusion methods by the differences between the decision
they induce, even – and mostly – when there is no prior
knowledge of a reality.

We try to use a panel as large as possible of fusion
combination methods; feed them with random belief
functions, and obtain a clear structure of the known
operators.

We first present the seven fusion operators we will
compare, and the measure we apply on them. We
present briefly what similarity analysis is, and give the
structures obtained with the distances built with two
or three random belief functions, on two to five classes.
We conclude with a short application on radar data.

2 The panel of DST fusion com-

binations

We place ourselves in the powerset 2Θ, where Θ is the
discernment space. A valid belief function allows any
X⊆Θ as a focal element. A mapping m on 2Θ is a
belief function if and only if:

(i) ∀X ⊆ Θ, m(X) ∈ [0, 1]

(ii)
∑

X⊆Θ

m(X) = 1

Sets X such that m(X) > 0 are called focal elements.

2.1 Usual methods

The non-normalized conjunctive rule, given by Smets
[10], gives:

mConj(X) =
∑

Y1∩...∩YM=X

M∏

j=1

mj(Yj), (1)

where Yj ∈ 2Θ is a response of the information source
j, and mj(Yj) the associated belief function.

The normalized version multiplies all the masses,
except the mass on ∅, by 1

1−m(∅) . Both versions are

associative. Let Conj(e1, ..., en) be the belief function
obtained by the fusion of n belief functions ei by the
conjunctive rule. We have:

Conj(Conj(e1, e2), e3) = Conj(Conj(e1, e3), e2)

= Conj(e1, e2, e3)

The autoconflict is defined as the conflict generated
by a belief function e with the Conj rule: a(e) =
mConj(e,e)(∅). Fusing n identical belief functions de-
fines the autoconflict of order n, with n > 1:

an(e) = mConj(e, . . . , e
︸ ︷︷ ︸

n times

)(∅)

This leads to an(e) 6 an+1(e). The conjunctive
rule is not idempotent: if the belief function e has
an auto-conflict of 0, there exists a maximal Y ⊆ Θ
such that for any focal element X of e, X ⊆ Y .
The conjunctive combination of n times the belief
function e tends to ē(Y ) = 1 when n tends towards



∞. If a(e) > 0 this conjunctive combination tends to
ē(∅) = 1, and limn→∞ an(e) = 1.

The arithmetic mean is another simple fusion op-
erator. It is not associative, but belief functions can
easily be fused with the result of the Mean operator:
Mean(e1, e2, e3) = 2

3Mean(e1, e2)+ e3

3 . The arithmetic
mean is idempotent: e = Mean(e, e); it works like a
weighted vote method:

mMean(X) =
1

M

M∑

j=1

mj(X). (2)

The mixed rule was given by Dubois and Prade [3]
for the powerset and extended by Dezert and Smaran-
dache to the hybrid rule for the hyper-powerset DΘ

(closure of Θ under intersection and union operators
in which an equivalence class of ∅ is defined). It dis-
tributes the partial conflict on partial ignorance:

mDP(X) = mConj(X) +
∑

Y1∪...∪YM=X

Y1∩...∩YM=∅

M∏

j=1

mj(Yj). (3)

This rule, like all the rules given in the next section,
is not associative. We can have DP(DP(e1, e2), e3) dif-
ferent of DP(e1, e2, e3).

2.2 Conflict-redistributing methods

Dezert and Smarandache proposed a list of proportion-
nal conflict redistribution methods [9] to redistribute
the local conflict on the focal elements implied in the
local conflict.

The most efficient is the fifth PCR rule given in this
paper. Its expression for two belief functions is given
in (4) and leads to the generalized rules PCR5 and
PCR6, presented thereafter. We use the term PCR
for the common restriction of PCR5 or PCR6 on two
belief functions.

mPCR(X) = mConj(X) +
∑

Y ∈DΘ,

X∩Y ≡∅

(
m1(X)2m2(Y )

m1(X)+m2(Y )
+

m2(X)2m1(Y )

m2(X)+m1(Y )

)

,
(4)

where mConj(.) is the conjunctive rule given by the
equation (1).

Dezert and Smarandache proposed an extension to
more than two information sources [9]:

mPCR5(X) = mConj(X)+

M∑

i=1

mi(X)
∑

M−1

∩
k=1

Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1

(
M−1∏

j=1

mσi(j)(Yσi(j))1lj>i

)
∏

Yσi(j)
=X

mσi(j)(Yσi(j))

∑

Z∈{X,Yσi(1)
,...,Yσi(M−1)}

∏

Yσi(j)
=Z

(
mσi(j)(Yσi(j)).T (X=Z,mi(X))

)
,

where σi counts from 1 to M avoiding i:

{
σi(j) = j if j < i,

σi(j) = j + 1 if j ≥ i,
(5)

and:
{

T (B, x) = x if B is true,
T (B, x) = 1 if B is false,

(6)

This function allows us to make conditional multi-
plications. We can also write T (B, x) by using the
indicator function: x + 1lB(1 − x).

We propose another extension to more than two in-
formation sources [6]. PCR5 and PCR6 coincide on
the two information sources case.

mPCR6(X) = mConj(X) +

M∑

i=1

mi(X)2

∑

M−1
∩

k=1
Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1










M−1∏

j=1

mσi(j)(Yσi(j))

mi(X)+

M−1∑

j=1

mσi(j)(Yσi(j))










,

where σ is defined like in (5).
This rule can be parametrized to decrease or in-

crease the influence of many small values toward one
large one. The first way is given by PCR6fα, applying
the function f(x) = xα with α ≥ 0 on each belief value
implied in the partial conflict. Any non-decreasing po-
sitive function defined on ]0, 1] can be used.

mPCR6fα
(X) = mConj(X) +

M∑

i=1

mi(X)1+α

∑

M−1
∩

k=1
Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1










M−1∏

j=1

mσi(j)(Yσi(j))

mi(X)α+

M−1∑

j=1

mσi(j)(Yσi(j))
α










The second way, given by PCR6gβ is to apply the
function on the sum of belief functions given to a focal



element. The function used is still f(x) = xβ , with β

positive.

mPCR6gβ
(X)=mConj(X)+

M∑

i=1

mi(X)
∑

M−1

∩
k=1

Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1

(
M−1∏

j=1

mσi(j)(Yσi(j))

)(
∏

Yσi(j)
=X

1lj>i

)(

mi(X)+
∑

Yσi(j)
=X

mσi(j)(Yσi(j))

)β

∑

Z∈{X,Yσi(1)
,...,Yσi(M−1)}




∑

Yσi(j)
=Z

mσi(j)(Yσi(j)) + mi(X)1lX=Z





β

3 Decision rule

There are many ways to provide a decision from a belief
function. Usually, the maximum of the plausibility, the
credibility or the pignistic probability is taken on the
space of admissible decisions, an anti-chain Γ of the
lattice 2Θ or DΘ. Γ is an anti-chain if for any X and
any Y in Γ, we cannot have X ( Y nor Y ( X .

Here, we only use these functions in 2Θ. Their ex-
tension to DΘ is immediate for plausibility and cred-
ibility. For the pignisitc probability, one may refer to
[2].

bel(X) =
∑

Y ⊆X,Y 6=∅

m(Y ) (7)

pl(X) =
∑

Y ⊆Θ,Y ∩X 6=∅

m(Y ) (8)

betP(X) =
∑

Y ⊆Θ,Y 6=∅

|X ∩ Y |

|Y |

m(Y )

1 − m(∅)
(9)

For any X ⊆ Θ, we have: bel(X) 6 betP(X) 6

pl(X), even with m(∅) = 0 (closed world hypothesis).
Here, we consider the maximum of pignistic probabil-
ity.

Notice that the input belief functions we use only
have singletons and Θ as focal elements, so the ob-
tained belief functions, except with the Dubois and
Prade method, only have singletons, Θ and ∅ as focal
elements. For any X and Y subsets of Θ, we have
bel(X) 6 bel(Y ) if and only if betP(X) 6 betP(Y ) if
and only if pl(X) 6 pl(Y ).

Difference between normalized conjunctive rule and
non-normalized conjunctive rule is a multipliative fac-
tor of 1

1−m(∅) . So their pignistic probabilities are equal,

and more generally the decision based on the order bel
or pl induce on Θ is the same.

4 Random belief functions

In order to compare the different combination rules, we
feed them with random belief functions, and compare
the decisions taken by the rules. The focal elements of

the random belief functions are all the elements of Θ,
and Θ itself. We have m(Θ) +

∑

x∈Θ m({x}) = 1.
A random belief function for a discernment space of

cardinal n is defined by an uniform probability distri-
bution on [0, 1]n ∩ {(x1, . . . , xn) ∈ IRn |

∑n

1 xi 6 1}.
Subsets of Θ with cardinal higher than 1 are never

focal elements, and we have a probability of 0 to get a
null mass on a singleton or on indifference, and also a
probability of 0 that two focal elements have the same
mass, plausibility, credibility or pignistic probability.
So we cannot have a total conflict between two random
belief functions, which would lead to an error when cal-
culating the pignistic probability of their combination,
nor a decision rule concerned by multiple maxima.

5 Modification of decision mea-

sure

As truth is not assumed to be available to the perfor-
mance evaluation, we do not count the good or the bad
decisions, but only the similarity between decisions in-
duced by the different fusion operators.

The decision induced by a belief function e is
xi = dec(e), with xi ∈ Θ, such that betP(xi) =
maxx∈Θ betP(x). The dissimilarity d(R, S) between
two fusion operators R and S is given by the probabil-
ity of having dec(R(e1, . . . , ek)) 6= dec(S(e1, . . . , ek)),
with e1, . . . , ek random belief functions on 2Θ, with
the same dicernment space Θ.

Numerical results presented in the following sec-
tions are the estimated percentages of these events.

We do not present here approximations of the ob-
tained dissimilarity, but we focus on the structure they
induce on the fusion operators [1][4].

A graph G = (X, E) compatible with a dissimilarity
d on X has the property that for any vertices x and
y, d(x, y) is greater than the largest d(u, v) for u and
v in a path from x to y, for at least one path between
x and y in G. As a natural cluster [5] of a dissimi-
larity d is a maximal clique of a threshold graph of d

(Gλ = (X, Eλ) with Eλ = {(u, v) ∈ X2 | d(u, v) 6 λ}),
the graph G restricted to any natural cluster of d is
connected. We use graphs minimal in terms of number
of edges for this property in order to obtain a structure
as simple as possible: Gd, a minimum rigidity graph of
d.

The following figure provides an example of how to
build a minimum rigidity graph from a dissimilarity d:

d x y z t u

x 0 1 2 3 3
y 1 0 3 2 3
z 2 3 0 1 2
t 3 2 1 0 2
u 3 3 2 2 0

The natural clusters of d are xy and zt (diameter
1), xz, yt and zut (diameter 2) and xyztu (diameter
3). The dissimilarity d admits two minimum rigidity
graphs:



x

y

t

u

z

x

y

t

u

z

Figure 1. Rigidity graphs of the natural clusters of d

Obtaining Gd is NP-hard [1], but we are dealing
with only 9 elements – our fusion operators – so this
operation is not too difficult. Also, for strongly struc-
tured dissimilarities, as all the ones presented in the
following sections, having rigidity graphs of |X |−1 or
|X | edges, polynomial algorithms exist.

A more usual study, through hierarchical classifica-
tion, would have shown the homogeneity of the propor-
tionnal conflict redistribution rules family, but would
not have shown its internal structure.

5.1 Two belief functions

When only two belief functions e1 and e2 are fused, we
have the following equalities:

PCR5(e1, e2) = PCR6(e1, e2) (10)

∀λ PCR6fλ(e1, e2) = PCR6gλ(e1, e2) (11)

With only two classes, we have also:

dec(Conj(e1, e2)) = dec(DP(e1, e2)) (12)

With two to five classes we obtain the following per-
centages of decision change, seen as a dissimilarity.

Two classes : d2,2

Conj PCR Mean PCR60.5 PCR62

Conj 0.0 0.7 2.2 0.3 1.2
PCR 0.7 0.0 2.9 0.3 0.5
Mean 2.2 2.9 0.0 2.5 3.4
PCR60.5 0.3 0.3 2.5 0.0 0.9
PCR62 1.2 0.5 3.4 0.9 0.0

Three classes : d2,3

Conj DP PCR Mean PCR60.5 PCR62

0.0 3.5 5.5 5.8 4.6 6.9
3.5 0.0 2.3 3.3 1.3 3.7
5.5 2.3 0.0 4.5 1.0 1.4
5.8 3.3 4.5 0.0 3.8 5.5
4.6 1.3 1.0 3.8 0.0 2.4
6.9 3.7 1.4 5.5 2.4 0.0

Four classes : d2,4

Conj DP PCR Mean PCR60.5 PCR62

0.0 6.2 9.2 8.7 7.9 11.2
6.2 0.0 3.5 3.8 2.0 5.5
9.2 3.5 0.0 5.5 1.5 2.0
8.7 3.8 5.5 0.0 4.5 7.0
7.9 2.0 1.5 4.5 0.0 3.5
11.2 5.5 2.0 7.0 3.5 0.0

Five classes : d2,5

Conj DP PCR Mean PCR60.5 PCR62

0.0 8.4 12.1 11.1 10.5 14.2
8.4 0.0 4.3 3.9 2.5 6.6
12.1 4.3 0.0 5.9 1.8 2.4
11.1 3.9 5.9 0.0 4.8 7.8
10.5 2.5 1.8 4.8 0.0 4.1
14.2 6.6 2.4 7.8 4.1 0.0

With two classes, the order (PCR62, PCR5&6,
PCR60.5, Conj&DP, Mean) is compatible with the dis-
tance obtained d2,2, which is a robinsonian dissimilar-
ity:

PCR62 PCR PCR60.5 DP, Conj Mean

Figure 2. Pyramid representation of d2,2

With more than two classes, decision can differ be-
tween DP and Conj: DP fusion method appears bet-
ween Conj and PCR60.5. Also, the mean operator is
more similar to DP than Conj. The following figure
represents a tree, compatible with d2,3, d2,4 and d2,5.
Edge lengths are an affine transformation of d2,4.

PCR62

PCR

PCR60.5

DP

Conj

Mean

Figure 3. Rigidity tree of d2,3, d2,4 and d2,5.

Limited to a discernment space of two classes, the
conjunctive rule is very similar to the conflict redis-
tribution rules, and the arithmetic mean is signif-
icantly different. With three classes, the conflict-
redistributing rules and the Dubois & Prade rule form
a natural cluster of diameter 3.7; within this family, the
Dubois & Prade rule is the most similar to the outliers,
Conj and the arithmetic mean, and those outliers are
at similar distances. With more than three classes, the
conjunctive rule provides decisions very different from
all the other rules.

5.2 Three belief functions

Adding a third belief function creates a difference be-
tween PCR5 and PCR6. It also separates the oper-
ators PCR6fλ (shortened to P6fλ in the tables) and
PCR6gλ, shortened to P6gλ.



Two classes : d3,2

Conj PCR6 PCR5 Mean P6f 1
2

P6g 1
2

P6f2 P6g2

0.0 1.0 2.6 3.8 0.8 0.6 2.2 1.6
1.0 0.0 1.9 4.5 1.0 0.4 1.6 0.6
2.6 1.9 0.0 6.3 2.8 2.2 0.8 1.5
3.8 4.5 6.3 0.0 3.5 4.2 6.0 5.0
0.8 1.0 2.8 3.5 0.0 0.7 2.6 1.5
0.6 0.4 2.2 4.2 0.7 0.0 1.9 1.0
2.2 1.6 0.8 6.0 2.6 1.9 0.0 1.2
1.6 0.6 1.5 5.0 1.5 1.0 1.2 0.0

The distance d3,2 is compatible with the following
graph, which is not a tree: there are two concurrent
ways to join the arithmetic mean operator to the PCR
family. The vertex Conj is merged with the Dubois &
Prade rule.

P6f2

P6g2

PCR6

PCR5

P6f0.5

P6g0.5

Conj
DP

Mean

Figure 4. Rigidity graph of d3,2

Three classes : d3,3

Conj DP PCR6 PCR5 Mean P6f 1
2

P6g 1
2

P6f2 P6g2

0.0 4.5 8.5 10.0 8.3 7.0 7.3 10.8 9.9
4.5 0.0 5.2 7.5 4.8 3.4 3.8 7.9 6.8
8.5 5.2 0.0 3.2 6.8 2.2 1.4 3.1 1.8
10.0 7.5 3.2 0.0 9.8 5.2 4.2 1.7 2.3
8.3 4.8 6.8 9.8 0.0 4.9 5.8 9.7 8.3
7.0 3.4 2.2 5.2 4.9 0.0 1.0 5.3 3.9
7.3 3.8 1.4 4.2 5.8 1.0 0.0 4.4 3.2
10.8 7.9 3.1 1.7 9.7 5.3 4.4 0.0 1.5
9.9 6.8 1.8 2.3 8.3 3.9 3.2 1.5 0.0

Four classes : d3,4

Conj DP PCR6 PCR5 Mean P6f 1
2

P6g 1
2

P6f2 P6g2

0.0 8.8 13.8 15.7 12.0 11.6 12.0 16.9 16.0
8.8 0.0 7.4 10.5 4.4 4.7 5.4 11.2 10.0
13.8 7.4 0.0 3.8 8.3 3.1 2.1 4.1 2.8
15.7 10.5 3.8 0.0 11.9 6.7 5.6 2.1 2.4
12.0 4.4 8.3 11.9 0.0 5.6 6.6 12.1 10.8
11.6 4.7 3.1 6.7 5.6 0.0 1.1 7.1 5.8
12.0 5.4 2.1 5.6 6.6 1.1 0.0 6.2 4.9
16.9 11.2 4.1 2.1 12.1 7.1 6.2 0.0 1.5
16.0 10.0 2.8 2.4 10.8 5.8 4.9 1.5 0.0

The distances d3,3 and d3,4 are almost compatible
with the following tree, where edge lengths are an affine
trasform of d3,3. To be complete, we have to add an
edge to make a path between Conj and PCR5 not pass-
ing through PCR6f2; there are five possibilities to add
such an edge, which has a large weight and does not
provide many structural information.

P6f2

P6g2

PCR6

PCR5

P6f0.5

P6g0.5

DP

Conj

Mean

Figure 5. Stable edges of the rigidity graphs of d3,3

and d3,4.

5.3 Using a non-associative rule by

pairs

Mean and conjunctive rule are associative: making the
fusion of M belief functions through those rules is not
more costly than M times the fusion of two belief func-
tions.

But the fusion of M belief functions, each one hav-
ing p focal elements, needs O(nM ) operations for the
other operators. For each fusion operator R, We mea-
sure the probability of having dec(R(R(ei, ej), ek)) 6=
dec(R(e1, e2, e3)) with (i, j, k) any permutation of
(1, 2, 3).

Classes 2 3 4
PCR6 3.1 6.8 10.6
PCR5 4.6 8.4 12.0
PCR6f2 4.7 7.0 9.0
PCR6f 1

2
5.1 11.5 17.7

DP 15.9 23.0 26.5

The Dubois and Prade rule is the most sensi-
tive to the order of parameters when calculating
dec(DP(DP(ei, ej), ek)). Note that when the only focal
elements are the singletons and indifference:

dec(DP(e1, . . . , eM )) = lim
ε→0

dec(PCR6gε(e1, . . . , eM )).

For the other rules, using pairwise operators instead
of an operator on three belief functions leads to differ-
ences in term of decision greater than using an asso-
ciative operator like Conj or a low time-consumming
method like Mean.

Non-associative operators cannot be safely consid-
ered as associative to speed up a fusion system.

6 Classes of fusion operators

We consider the classes formed by the distances d3,3

and d3,4, as the other distances either do not distin-
guish between PCR5 and PCR6 or between DP and
Conj.

The Dubois and Prade fusion method, replacing lo-
cal conflict on local indifference, is central. It makes
a connection between the conflict-redistributing rules
(PCRs) and the conjunctive rule, placing local conflict
on ∅ and the arithmetic mean, which has a simple ad-
ditive principle, and does not generate conflict.



6.1 Two outliers: conjunctive rule and

mean

The conjunctive rule is multiplicative, so one very low
weight on a singleton is sufficient to reduce the chances
of this singleton of being decided nearly to zero. This
is the key of the Zadeh paradox [11], and explains the
large difference between the decision proposed by the
conjunctive rule and the other rules.

As we use the maximum of pignistic probability,
many rules similar to Conj are equivalent: by example
the normalized conjunctive rule or putting local
conflict on Θ instead of ∅.

The arithmetic mean does not work on the notion
of conflict. Nevertheless, its nearest neighbour is con-
stant for all the situations studied: it is the Dubois and
Prade method, and the distance between this outlier
and the PCR family is more stable than the conjunc-
tive rule’s one.

6.2 A chain to sort PCR methods

Among the PCR rules, an order shows up: (PCR5,
PCR6f2, PCR6g2, PCR6, PCR6g0.5, PCR6f0.5).

We have seen that with the focal elements used in
our belief functions, Dubois and Prade rule is the limit
in 0 of the PCR6gε, explaining the right part of this
order.

The value of 2.5 for λ parameter minimizes
dist(PCR6fλ, PCR5): PCR5 is not a limit for this
generalization of PCR6. Using more values for λ brings
the internal structure of PCR methods:

PCR6 PCR6fλ

PCR6gλ

PCR6fλ

PCR6gλ

(DP) PCR5

0 < λ < 1 λ > 1

λ = 2.5

Figure 6. Variations around PCR6

7 Application to radar data

We treat radar frequency profile data, composed of
1500 elements, with three classifiers and ten tar-
gets: Supervised ART, k-fuzzy nearest neighbours,
and multi-layer perceptron [7]. We convert the inner
masses of these classifiers into belief functions, with a
normalization that guarantees that the mean indiffer-
ence of each belief function is 0.2, and that there is no
more than three focal classes, indifference included. To
obtain significant measure of good classification rate,
we use 800 different pairs of learning set (size 1000) and
testing set (size 500). By the way we have have 400000
distinct belief functions for each classifier to feed the
fusion methods.

The best results are obtained for PCR6, PCR6g0.5,
PCR6f0.5, DP and Mean, which form a connected class

of Gd3,3 and Gd3,4 . Maximum is reached for PCR6f0.5.
The following table gives the percentages of good clas-
sification obtained with the different fusion methods.
A confidence level at 95% gives a interval of ±0.1%
around each value.

Conj DP Mean PCR6 PCR5 P6f 1
2

P6g 1
2

P6f2 P6g2

89.83 89.99 90.09 90.05 89.85 90.11 90.08 89.94 90.00

Dissimilarity obtained on radar data
Conj DP Mean PCR6 PCR5 P6f 1

2
P6g 1

2
P6f2 P6g2

0.0 0.68 1.34 2.02 2.83 1.53 1.60 2.77 2.53
0.68 0.0 0.85 1.47 2.37 0.94 1.04 2.27 2.01
1.34 0.85 0.0 1.59 2.65 1.01 1.22 2.44 2.09
2.02 1.47 1.59 0.0 1.08 0.61 0.44 0.88 0.55
2.83 2.37 2.65 1.08 0.0 1.67 1.46 0.51 0.71
1.53 0.94 1.01 0.61 1.67 0.0 0.23 1.49 1.15
1.60 1.04 1.22 0.44 1.46 0.23 0.0 1.29 0.99
2.77 2.27 2.44 0.88 0.51 1.49 1.29 0.0 0.39
2.53 2.01 2.09 0.55 0.71 1.15 0.99 0.39 0.0

The proportions of decision change between the dif-
ferent fusion methods are compatible with the struc-
tures showed by the random belief functions. The
rigidity graphs compatible with this dissimilarity are
the same than the rigidity graphs of d3,3 and d3,4,
shown figure 5.

8 Conclusion

This cartography of these usual or new fusion methods
shows a strong (as it is in most cases a tree) structure.
This map should be used as a guide to test methods in
the neighboring of a efficient one to improve the fusion
results. It can also be taken by leaves and root, testing
Mean, Conj, PCR5 and DP to identify a promising
branch, and explore it in order to find an efficient fusion
method for a given dataset.

The third way may be the more important for a
young concept like PCR rules: it “shows” unexplored
fusion methods, lying between DP and Mean, or some-
way orthogonal to the chain from PCR5 to DP. In or-
der to improve results on radar data, we may have to
build fusion methods between PCR6 and Mean, signif-
ficantly different of DP.
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