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Abstract

Recognition performance decreases when recognition systems are used over the telephone network, especially

wireless network and noisy environments. It appears that non-efficient speech/non-speech detection (SND) is an im-

portant source of this degradation. Therefore, speech detection robustness to noise is a challenging problem to be

examined, in order to improve recognition performance for the very noisy communications. Several studies were

conducted aiming to improve the robustness of SND used for speech recognition in adverse conditions. The present

paper proposes some solutions aiming to improve SND in wireless environment. Speech enhancement prior detection is

considered. Then, two versions of SND algorithm, based on statistical criteria, are proposed and compared. Finally, a

post-detection technique is introduced in order to reject the wrongly detected noise segments.

� 2002 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Die Spracherkennungsleistung vermindert sich stark, wenn Spracherkennungssysteme in Telefonnetzen schlechter
€UUbertragungsqualit€aat eingesetzt werden und/oder der Anruf in einer Umgebung st€oorender Nebenger€aausche gef€uuhrt
wird. Es erscheint offensichtlich, dass die schlechte Unterscheidung zwischen Sprache und Rauschen/Nebenger€aauschen
einen Grossteil des Verlustes der Spracherkennungsleistung ausmacht. Daher ist das sichere Unterscheiden zwischen

Sprache und Rauschen/Nebenger€aauschen ein grundlegendes Problem, dessen Untersuchung auf eine Verbesserung

der Spracherkennungsleistung in stark verrauschten Komunikationssystemen zielt. Einige Studien haben zu einer

Verbesserung der Unterscheidung von Sprache und Rauschen/Nebenger€aauschen beigetragen und damit die

Spracherkennungsleistung unter ung€uunstigen Bedingungen erh€ooht. Dieser Artikel schl€aagt L€oosungen f€uur das Problems

der Unterscheidung von Sprache und Rauschen/Nebenger€aauschen vor. Zun€aachst werden Vorverarbeitungen zur

Spracherkennung betrachtet. Dazu werden zwei Versionen Rauschen/Nebenger€aauschen, der auf statistischen Kriterien

basiert, vorgestellt und verglichen. Letztlich wird eine Technik zum Filtern f€aalschlich Sprachsegmente vorgef€uuhrt.
� 2002 Elsevier Science B.V. All rights reserved.

R�eesum�ee

Les performances de la reconnaissance sont fortement d�eegrad�eees lorsque les syst�eemes de reconnaissance sont em-

ploy�ees sur des r�eeseaux t�eel�eephoniques particuli�eerement difficiles et dans des environnements bruit�ees. Il apparâııt �eevident
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que la d�eetection de parole/non-parole est une source importante de cette d�eegradation. Ainsi la robustesse de la d�eetection
de parole est un probl�eeme crucial �aa examiner pour am�eeliorer les performances de la reconnaissance pour des com-

munications tr�ees bruit�eees. De nombreuses �eetudes ont conduit �aa am�eeliorer la robustesse de la d�eetection de parole/non-

parole pour une utilisation de la reconnaissance de parole dans des conditions difficiles. Ce papier propose des solutions

pour l�am�eelioration de la d�eetection de parole/non-parole en environnement tr�ees bruit�ee. Des pr�ee-traitements �aa la

d�eetection de parole sont d�abord consid�eer�ees. Nous proposons et comparons ensuite deux versions d�un algorithme de

d�eetection de parole/non-parole, fond�eees sur des crit�eeres statistiques. Finalement, une technique de post-traitement est

introduite dans le but de rejeter les d�eetections de bruits prises pour de la parole.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nowadays, interactive voice response systems

are increasingly used, involving speaker-indepen-

dent recognition of given vocabularies over the

telephone network. In the same time, the recent

rising crescendo of activity in mobile communi-

cation domain offers new opportunities for ap-

plications of speech recognition. However, the
flexibility of such mobile networks offers the pos-

sibility to call from anywhere and at any time: calls

can be made in various environments (e.g. indoor,

outdoor, stopped car, running car). This results in

very noisy speech.

In very noisy environments, the recognition

performance degrades drastically. Robustness to

noise is then required for an efficient use of the
recognition systems especially in mobile networks

context. Various studies have been conducted in

this direction (Savoji, 1989; Mauuary and Monn�ee,
1993; Junqua et al., 1994; Agaiby and Moir, 1997;

Karray and Mauuary, 1997). Several pre-process-

ing techniques have been developed in order to

reduce the noise effects in the speech to be recog-

nized. Enhancement procedures like spectral sub-
traction (Berouti et al., 1979; Mokbel et al., 1997)

remove ambient noise. The transmission effects

are reduced using equalization techniques such

as cepstral normalization and adaptive filtering

(Hermansky et al., 1993; Mokbel et al., 1995).

Moreover, high performance speech recognition

requires efficient speech detection, especially in

noisy environments. When using isolated-word
recognition techniques, it is well known that a

major cause of error in automatic speech recog-
nition is inaccurate detection of the endpoints.

Many speech/non-speech detection (SND) tech-

niques are based on energy levels (Savoji, 1989).

However, in real environments, the speech signal is

corrupted by additive noise and energy mean

based parameter may be insufficient for the correct

detection of speech if the signal-to-noise ratio

(SNR) is low.
Therefore, this paper provides some solutions

aiming to improve the speech detection robustness

in noisy wireless environments. The paper is or-

ganized as follows.

In Section 2, we describe the evaluation context:

databases and modeling issues. The SND system is

described in Section 3. This adaptative speech de-

tection algorithm provides the starting point for
investigating three different improvements, which

are described in Sections 4–6. Conclusions are

presented in Section 7.

2. Speech databases and modeling issues

Since this paper deals with SND in the observed
signal, the considered databases contain continu-

ously recorded speech. This means that the whole

communication is continuously recorded, includ-

ing words and also silence or noise between the

words. Thus, we obtain what we called a contin-

uous recording isolated words database.

Two databases are used for evaluation. One is

recorded over public switched network (PSN). The
other is a global system mobile (GSM) database.
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2.1. PSN database

The PSN database is a 25 word database col-

lected in field condition using an interactive voice
response system giving movie programs. The ob-

tained corpus contains about 30,500 hand seg-

mented and labeled tokens, of which 76% are

vocabulary words, 16% are out-of-vocabulary

(OOV) words, and 8% are noise segments.

This database is used, in this paper, to evaluate

the effect of the proposed solutions and check their

compatibility in the context of relatively quiet en-
vironments (see Section 5.4).

2.2. GSM database

We use a laboratory GSM database of 51 words

(digits and several command words) collected

continuously, over the wireless GSM network.

Several call environments are considered, as

follows:

• indoor: office, house, etc. (relatively quiet), with
an average SNR of 17.5 dB,

• stopped car: (also relatively quiet, if the car win-

dows are closed !), with an average SNR of 18.8

dB,

• outdoor: street, market, etc. (generally noisy

with impulsive noises), with an average SNR

of 17.1 dB,

• running car: with more or less speed and ambi-
ent noise (generally noisy, with a varying level

of noise), with an average SNR of 16.6 dB.

The principal difference between the first two

conditions and the last two conditions is the

number of impulsive noises. Moreover outdoor

and running car environments have an average

SNR lower than indoor and stopped car environ-
ments.

About 500 labeled communications are used

with almost the same proportion of each envi-

ronment (26% indoor, 22% outdoor, 29% from

stopped car and 23% from running car). The ac-

quisition of the whole communications results in

long regions without speech, and therefore in

many regions of noise. Hence, in the obtained
signal, not only are ambient noises frequent (es-

pecially in outdoor and running car calls), but the

GSM transmission effects are also very disturb-
ing. Therefore, different labels of noise and OOV

words were added to the initial vocabulary words.

This results in a database of 35,995 labeled seg-

ments, of which 64% are vocabulary words, 7% are

OOV words and 29% are noise segments (16%

background noises (BN), 9% GSM channel dis-

tortion (GSMN), and 4% remaining echoes).

2.3. Speech recognition system

The speech recognition system developed in

France T�eel�eecom R&D is based on hidden Markov
models (HMMs) and used in speaker-independent

mode (Sorin et al., 1995). The feature vectors used

in our experiments contain 27 coefficients. First,

the energy on a logarithmic scale and the first 8

Mel frequency cepstrum coefficients are computed

on 32 ms frames; with a frame shift of 16 ms.

Then, first and second derivatives of these nine

coefficient vectors are estimated on a 5-frame
window.

Left–right HMMs with 30 states are used to

model the vocabulary words, and silence models

are placed on both sides of the vocabulary models

to avoid precise detection of the words to rec-

ognize. A simple Gaussian probability density

function with a diagonal covariance matrix is as-

sociated with each HMM state. The global system:
acoustic analysis, SND and HMM modeling, is

depicted in Fig. 1. The SND system is described in

the next section.

3. Speech/non-speech detection

It was observed that a significant number of
recognition errors are caused by non-efficient SND

Fig. 1. Global recognition system. C10 is the acoustic analysis

module and SND is the one of speech/non-speech detection.
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(Mauuary, 1994), since some utterances may be

truncated or even omitted. Field and wireless

communications are very good illustrations of

such problems. Therefore, several speech detection
systems were studied and evaluated (Mauuary,

1994; Junqua et al., 1994). In this paper, an

adaptive five state automaton is considered as a

reference system to be improved.

The five states are: silence, speech presumption,

speech, plosive or silence and possible speech con-

tinuation (Mauuary and Monn�ee, 1993).
The transition from a given state to another one

is conditioned by the frame energy and some du-

ration constraints. These transitions between the

different states determine the boundaries of speech

segments. The speech presumption, plosive or si-

lence and possible speech continuation states are

introduced in order to cope with the energy vari-

ability in the observed speech and to avoid various

kinds of noise. Hence, the speech presumption
state avoids the automaton going in the speech

state when the energy increase is due to an im-

pulsive noise. The plosive or silence state takes the

energy decrease within the speech (typically plo-

sive) into account. The possible speech continuation

state is indicative of the silence between two words

within a group of words.

3.1. Baseline energy based adaptive detection algo-

rithm

For adaptive detection, the energy requirements

are based on an estimation of the SNR of the

observed speech signal. The technique relies on a

comparison between short-term and long-term

estimates of the signal energy.

The short-term estimate is the mean energy

computed over the last K frames, where K is the
short-term span. As for the long-term energy, it is

estimated recursively, when the automaton is in

the silence state, as follows:

LTEE LTEEþ ð1� kÞðenergy� LTEEÞ;

where LTEE denotes the long-term energy esti-

mate and k is the forgetting factor (we use k ¼
0:99). Then, the difference between short-term and

long-term estimates is compared to a given
threshold on the energy.

3.2. Evaluation procedure

It was shown (Mauuary, 1994) that some de-

tection errors can be recovered by a rejection
module used in the decoding process. For instance,

a noise input can be rejected in the rejection

module, which allows recovery from the speech

detector error. Therefore, the detector evaluation

procedure takes the whole recognition system into

account. This evaluation is based upon the com-

parison between the reference and the recognized

segments. The reference segments correspond to
the hand segmentation and labeling of the calls.

The recognized segments correspond to the auto-

matic segmentation (by the speech detector) and

labeling (by the recognition module) of the calls.

In practice, original signals from the continuous

recording database are automatically segmented

using the considered five state speech detector,

then automatically labeled using a HMM. This
HMM is trained on reference utterances extracted

from the original signals after a hand segmentation

and labeling. These automatically detected and

labeled segments are then compared to the refer-

ence hand segmented and labeled ones, in order to

evaluate the SND.

Substitution of vocabulary words and false ac-

ceptance of OOV words and noises are considered
as major errors. Rejection of vocabulary words are

less severe errors, but also important.

3.3. Results in adverse conditions

We usually give the evaluation results in terms

of severe error rates (substitution errors and false

acceptance errors) and false rejection error rates,

as shown in Fig. 2. This figure illustrates the results

obtained on the GSM database using the adaptive

SNR-based endpoint detection algorithm. We give
the results of a global evaluation, but we split

false rejections into rejection errors due to the

recognition model (false labeling of vocabulary

word segments) and those resulting from a detec-

tion error (non-detection of vocabulary word

segments). These results demonstrate the recogni-

tion and detection difficulties in such noisy con-

ditions. Notice that the difficulties increase for
outdoor and running car calls.
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In the following, we will propose some solutions

in order to improve the poor recognition perfor-

mance. Three aspects will be considered:

1. Pre-processing the observed speech in order to

improve its quality prior detection.

2. Improving the SND algorithm within the SND

system.

3. Post-processing the output detection in order to

eliminate the wrongly detected noise segments.

4. Speech enhancement prior detection

Several pre-processing techniques may be used

in order to reduce the channel effects of the tele-
phone network and/or to enhance the speech sig-

nals in the presence of ambient noise (Mokbel

et al., 1997). Two channel effect removing tech-

niques (cepstral normalization and adaptive filter-

ing (Mokbel et al., 1995, 1997)) and also spectral

subtraction were shown to be efficient for the

recognition module in the PSN environment.

Here, we consider spectral subtraction and its ef-
fect on the whole recognizer including SND.

4.1. Spectral subtraction

Recall that spectral subtraction involves esti-

mating the mean noise spectrum in the non-speech
parts of the signal and subtracting this estimate

from the frame spectra.

The noise spectral features considered in the

algorithm are the mean and variance of the spec-

tral densities in all the frequency bins, as well as

the mean and variance of the filter-bank outputs.

To better understand the algorithm, we will

consider the observed signal xðtÞ which contains
speech and noise,

xðtÞ ¼ sðtÞ þ nðtÞ;

where sðtÞ denotes clean speech signal and nðtÞ an
additive noise.

By supposing x, s and n centered distributions,
and clean speech and noise decorrelated, we obtain

in the spectral domain,

Cxðf Þ ¼ Csðf Þ þ Cnðf Þ:

For a given frame we observe the spectral density:

Cxðf Þ. The corresponding spectral density of the
clean speech can be estimated as follows:

bCCsðf Þ ¼ Cxðf Þ � bCCnðf Þ:

In practice, bCCnðf Þ is estimated in the non-speech

parts of the observed signal. This estimation is

updated in the silence periods, which are detected

using some energy constraints. For more details

see for example (Berouti et al., 1979).

Notice that this technique makes the assump-

tion of stationary noise (at least for a word dura-
tion). This hypothesis is not true in the case of

impulsive noise observed in the cellular network

communications. Besides, a good estimation of

noise spectrum requires a good detection of non-

speech parts in the observed signal.

4.2. Evaluation

This pre-processing technique is applied on

the GSM database. The enhanced continuously

recorded database is segmented using the consid-

ered 5 state speech/non-speech detector. For the

detection algorithm, we used the initial adaptive
SNR-based algorithm.

Fig. 2. Global evaluation of original speech recognition over

the GSM network. Error rates are given in adverse call envi-

ronments. Percentages of substitution errors (SE), false accep-

tances (FA) and false rejection (FR) are plotted. Distinction is

made between FR due to the speech detector (SND) and those

due to the recognition module.
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In order to take the recognition module into

account, the training data (of the HMM model

used for automatic labeling) is also pre-processed.
Experimental results are summarized in Fig. 3.

The different points of the curves are obtained

by varying the weight of the garbage models with

respect to the weight of the vocabulary model. On

the same figure, we summarize the results ob-

tained, using the same procedure as above, with

the same signals but after spectral subtraction pre-

processing.
We notice that the application of spectral sub-

traction on the original speech improves the results

considerably. Typically, for the same false rejec-

tion rate, the false alarm rate as well as the sub-

stitution errors are reduced. This decrease is a

result of the improvement in the different recog-

nition system modules. However, we will show, in

the following, that it is mainly the SND module
which was improved.

4.3. Investigations into the reasons for differences in

performance

If we segment the original signal and only apply
spectral subtraction after the speech detection

stage (see plot I in Fig. 3), we notice that the re-

sults are almost the same as the baseline results.

We also examined the case when we process only
the signal to be segmented and use the original

speech to build the model and to label the detected

segments (this corresponds to plot II in Fig. 3). We

notice that we achieve almost the same results as

when the spectral subtraction was applied not only

at the segmentation stage but also at the model

training and labeling stages. Hence, only the en-

hancement of the signal to be segmented improves
the results. This proves that the main improvement

takes place in the detection module.

Another experiment shows that the improve-

ment is due to the effect of the considered pre-

processing on the signal energy. It consists in

modifying the spectral subtraction algorithm in

such a way that only the signal energy is processed.

For the experiment the original speech is pre-
processed in the same conditions as above but

using the modified algorithm, which means that

only its energy is pre-processed. Results are sum-

marized in Fig. 4.

We can easily see that we have almost the same

results as with the initial spectral subtraction pre-

processing. Recall that the detection algorithm is

Fig. 3. Global evaluation results in GSM environment. We plot substitution error rates (%SE) and false acceptance rates (%FA)

function of the false rejection rates (%FR). The ‘‘baseline’’ curve corresponds to the original signal (without pre-processing) and the

‘‘spectral subtraction’’ curve to the pre-processing speech prior segmentation and training. The plots I and II result from a cross-

testing.
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based on the signal energy parameter alone. On

the other hand, the contribution of this parameter

is less important in the other modules of the whole

recognition system (Mokbel et al., 1997). This

provides the proof of spectral subtraction effi-

ciency in speech detection, with only the signal

energy pre-processed.

Hence, since spectral subtraction improves
mainly the detection module, pre-processing the

training data set is not necessary (see Fig. 3). Be-

sides, only the signal energy needs to be filtered.

As a conclusion of these results, we notice that

spectral subtraction reduces the error rates con-

siderably. This could be easily explained by the

fact that spectral subtraction allows an important

reduction of the disturbing ambient noise. Thus,
speech/noise detection is improved in GSM com-

munications.

However, more efforts are needed in order to

improve the robustness to GSM transmission ef-

fects. For instance, impulsive noise has an impor-

tant contribution in the transmission distortion

over the GSM channels. But, it could not be re-

moved by the spectral subtraction technique re-
called above. Therefore, special treatments will be

investigated in order to perform robust recogni-

tion and speech detection for communications

over the GSM network (see Section 6).

In the following, we will focus on the im-

provement of the endpoint detection algorithm

robustness to noise by using other criteria for

speech/non-speech distinction.

5. Detection algorithms based on statistical criteria

In this section, we propose two new criteria for

the SND algorithm in order to improve recogni-
tion performance. The first criterion is based on

noise statistics. The second one considers both

noise and speech statistics.

5.1. Algorithm based on noise statistics

We consider the same automaton as the one

described in Section 3. However, the transition

between the 5 states (silence, speech presumption,

speech, plosive or silence and possible speech

continuation) is, in this case, based on a statistical

criterion and duration constraints (the same as in
the adaptive SNR-based algorithm).

Fig. 4. Results when processing energy only. We plot substitution error rates (%SE) and false acceptance rates (%FA) as a function of

the false rejection rates (%FR). The plots result from a global evaluation in GSM environment after pre-processing by the modified

spectral subtraction algorithm (see text above).

L. Karray, A. Martin / Speech Communication 40 (2003) 261–276 267



The idea involves testing the hypothesis of

noise, for each observed frame. Therefore, we

consider a normal distribution ðl; rÞ for noise

statistics. Then, for each frame, we compute the

critical ratio,

rðxÞ ¼ x� l
r

;

where x is the current frame energy. This ratio is

compared to a given threshold in order to decide if

the considered frame belongs to noise or not.

The noise hypothesis is accepted for critical

ratio values within a 95% confidence interval. The

noise statistics are estimated recursively when the
automaton is in the silence state as follows:

l lþ ð1� kÞðx� lÞ:

As for the variance estimation, we first estimate

the second order moment l2,

l2  l2 þ ð1� kÞðx2 � l2Þ:

Then, the variance r2 is easily obtained,

r2 ¼ l2 � l2:

Tested on the GSM database described above, the
statistical criterion results in a slightly more robust

algorithm compared to the initial one based on

SNR estimation. The results are shown in Fig. 5.

However, recognition performance in noisy

environments still requires more improvement. In

order to increase robustness to noise, we try to

reduce noise effects by pre-processing the observed

speech signal prior to detection. Therefore, we use
spectral subtraction, as this technique had previ-

ously been shown to be very efficient in such

conditions (see Section 4). The results using spec-

tral subtraction are included in Fig. 5. The pre-

processing by spectral subtraction enhances the

observed speech and increases the performance

improvement.

5.2. Detection algorithm based on speech and noise

statistics

In this version of the detection algorithm, we

consider both noise and speech statistics. Notice

that, in adverse conditions, the speech parts of the

observed signal are corrupted by noise (ambient

noise or transmission distortion, etc.). Hence, the

speech statistics actually represent the statistics of

speech plus noise.

Since the aim of SND is to distinguish between
noise (or non-speech) and speech frames, we con-

Fig. 5. Algorithm based on noise statistics. Evaluation results in GSM environment. We plot substitution error rates (%SE) and false

acceptance rates (%FA) as a function of the false rejection rates (%FR). Results are given for SNR initial algorithm, the new statistical

algorithm and their combination with spectral subtraction.
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sider two distributions: one for noise and one for

speech. Then, we decide to which distribution each

frame of the observed signal belongs.

In other words we have to deal with a hypoth-
esis testing problem, with

• H0: noise (or non-speech),

• H1: speechþ noise.

The decision rule considers the most probable

hypothesis, according to the Bayesian approach.

This results in a decision criterion based on max-
imum likelihood. Hence, for a given observed

frame x, we compare the likelihood PrðHk=xÞ of
the two hypotheses H0 and H1. Using Bayes for-

mula and assuming the two hypotheses equally

distributed, the problem is reduced to a com-

parison to 1 of the ratio: rðxÞ ¼ ðP ðx=H0ÞÞ=ðP ðx=
H1ÞÞ.

Hence, we end up with a likelihood ratio crite-
rion.

The decision rule is the following:

• if rðxÞ > 1 the frame x belongs to a noise (or

non-speech) segment (hyp. H0),

• if rðxÞ6 1 the frame x is a speech frame (hyp.

H1).

The distributions corresponding to H0 and H1

are determined recursively by estimating their

means and variances as described in Section 5.1.

Noise statistics are updated every time the au-
tomaton is in the silence state. Speech statistics are

updated every time the automaton is in the speech

state. For recursive adaptation, we use a forgetting

factor of 0.99 for noise statistics, and 0.95 for

speech statistics, assuming that noise is more sta-

tionary than speech.

Tested on the GSM database, this extended

statistical approach results in a more robust
algorithm compared to the initial one based on

SNR estimation and the one based on noise sta-

tistics only.

Recognition results are evaluated using the

different algorithms mentioned above. The new

algorithm performance is then compared to the

previous ones. In Fig. 6, we summarize the results

obtained with the different algorithms.
This figure shows that the algorithm based on

speech and noise statistics improves the overall

recognition performances, especially when com-

bined with spectral subtraction.

Moreover, the overall measured decrease in the

error rate actually depends on how noisy the ob-

served signal is. In the following, we will provide a

Fig. 6. Algorithm based on noise and speech statistics. Evaluation results in GSM environment. We plot substitution error rates (%SE)

and false acceptance rates (%FA) as a function of the false rejection rates (%FR). Results are given for SNR initial algorithm, the noise

statistical algorithms and their combination with spectral subtraction.
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detailed study of the different algorithms� behavior
in adverse call environments (indoor, outdoor,

stopped car and running car).

5.3. Performance in adverse call environments

The GSM database used for the experiments

contains calls from several environments. Indoor
and stopped car conditions are generally relatively

quiet. But the other difficult environments (out-

door and running car) can be very noisy, and

usually present very high acoustical variations.

The results obtained with the different SND

algorithms described above (based on SNR, noise

statistics or noise and speech statistics) are given,

in Fig. 7, separately for each condition.
We notice different behaviors according to the

call environment. Hence, we obtain more im-

provement in noisy environments than in quiet

ones. This could be easily explained by the fact

that quiet communications contain less noise and

less acoustical variations than difficult conditions.

For noisy environments, the estimation of noise

and speech statistics increases the detector ro-

Fig. 7. Evaluation of the different SND algorithm in adverse call environments. For each call environment, we plotted the severe error

rates (false acceptance and substitutions), as a function of the false rejection error rates. We also show the effect of spectral subtraction

combined with the different algorithms, in the different call environments.
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bustness to the variations of the ambient noise

characteristics (for instance, due to speed varia-

tions in the running car case). We also notice that

spectral subtraction pre-processing does not im-
prove the results for either of the statistics-based

speech-detection methods when tested in the rela-

tively quiet environments. This finding is also

easily explained by the lack of additive noise in

these environments, so spectral subtraction could

not improve the performance. However, in difficult

(outdoor and running car) conditions, the effect of

the pre-processing is more noticeable.

5.4. Consistency in PSN environment

In order to check the compatibility of the pro-
posed algorithm, the same techniques are tested

for speech recognition over the PSN network. The

PSN continuously recorded field database, de-

scribed in Section 2.1, is used. The results are

shown in Fig. 8.

The performances with the different solutions

do not differ significantly, presumably because the

PSN speech contains little ambient noise. We
cannot objectively compare the performances on

the PSN database and on the GSM database, since

one is a field database (PSN case) and the other is

a laboratory database (GSM case). However, it is

obvious that the major difference is the ambient

noise and the signal variability.

6. Post-detection denoising technique

Despite the improvements, many segments of

noise may be wrongly detected by the speech/non-

speech detector, which increases the false accep-

tance errors. These errors are due to the poor
quality of the observed signal. In the GSM speech

signal one can notice several noises: ambient noise

(people in the street, cars, etc.), impulsive noise

(due to the cellular network transmission), etc.

However, a spectral study of the GSM signal

shows that the various kinds of noise are not lo-

cated in the same energy band. Therefore, we in-

troduce in this section a post-processing technique
based on the localization of different kinds of noise

in different sub-bands. The algorithm is based on a

denoising technique using a discrete wavelet

transform of the detector�s output segments.

6.1. Wavelet transform and denoising

Several previous studies have shown thres-

holding in the wavelet domain to be an effective

technique in denoising (Donoho, 1995; Burley and

Darnell, 1997; Burstein and Evans, 1997; Downie
and Silverman, 1998). We will not provide here the

derivation or a detailed discussion of the wavelet

transform, more details and discussions could be

found in (Vetterli and Kovacevic, 1995). Wavelet

based noise reduction takes advantage of the

wavelet transform simultaneous localization of

time and frequency information. In the wavelet

domain, scale corresponds to frequency. Coarse
scale wavelets are localized in frequency, while fine

scale wavelets are localized in time. The advantage

of this localization is that modification can be

made to the signal at particular scales without

affecting, noticeably, the remainder of the signal

for all time. This is in sharp contrast to filtering in

the Fourier transform domain. Therefore, appli-

cation of wavelets to signal processing has a great
interest. Due to localization properties, and the

Fig. 8. Global evaluation of original speech recognition over

the PSN network. Error rates are given for the different algo-

rithms. We plot severe error rates (substitutions and false ac-

ceptance) as a function of the false rejection rates.
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energy preserving nature of the wavelet transform,

the signal will be represented in the wavelet do-

main predominately by a small number of large

coefficients corresponding to the time-scale loca-
tion of the signal phenomenon.

In this section we investigate a denoising

method based on a reduction or suppression of the

contribution of noise while reconstructing the ini-

tial transformed segment.

An example of speech and noise in a portion of

the observed signal is shown in Fig. 9. It contains

an example of GSM noise followed by a vocabu-
lary word, in a (relatively) clean environment. This

portion of signal is filtered using discrete wavelet

transform. Fig. 10 presents the obtained sub-bands

(seven sub-bands). This figure illustrates the pos-

sibility to localize speech and noise in the sub-

bands.

The idea involves taking advantage of the time–

frequency localization properties of the wavelet
transform, to reduce or suppress the contribution

of the sub-bands where noise is dominating.

Therefore, we need to localize the different kinds

of noise and to distinguish them from the speech

segments, in the different decomposition levels. We

focus on two kinds of noise: GSMN and BNs that

we would like to reject.

In order to localize them in the different de-

composition levels, a statistical study of the energy
in the different sub-bands is conducted, based on

the time–frequency localization properties of the

wavelet transform. For this purpose, we localize,

for each segment, the maximum of energy M1 in

the first half of decomposition levels and M2 the

maximum in the second half. For example, if we

consider 12 decomposition levels, M1 is the maxi-

mum of energy in levels 1–6 (high frequencies),
and M2 the maximum of energy in levels 7–12

(lower frequencies). Figs. 11 and 12 illustrate the

distribution of energy in the sub-bands for a

GSMN segment (Fig. 11) and a real speech seg-

ment (Fig. 12).

Then, we compute the ratio: R ¼ M1=M2.

A statistical study of this ratio shows that:

• For 95% of speech segments, we notice that

R > 5, and only 0.5% of speech segments have

R < 2;

• For 70% of GSMN segments and 50% of BNs

segments, we notice that R < 5.

Fig. 9. Example of segment containing GSM noise (first peak) and speach (the three following peaks).
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This study allows us to define a certain scale to

measure the contribution of noise in the sub-

bands. Hence, we end up with a discrimination

criterion between speech and several kinds of

noises. This leads to the following decisions:

1. If R > 5, the segment is more likely to be

speech, we keep it;

2. If 2 < R < 5, the segment may be corrupted by

noise, we can denoise it if we reduce the contri-

bution of the first decomposition levels (high

Fig. 10. Discrete wavelet decomposition of the signal portion of the segment depicted in the previous figure. Seven decomposition

levels are considered using a 10-tap Daubechies filter.

Fig. 11. (a) A GSM noise segment and (b) the corresponding distribution of the energy in the sub-bands. M1 (first energy maxima) is

reached in level 4, and M2 (second energy maxima) in level 12. M1 is slightly lower than M2.
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frequencies) by under-weighting them while re-

constructing the segment;

3. If R < 2, the segment is more likely to be noise

(GSMN), we reject it;

This criterion is then used as a post-processing

of the basic endpoint detection. This post-pro-

cessing results in a reduction or suppression of the
contribution of the sub-bands where noise is

dominating. Thus, several noisy segments could be

rejected, and corrupted speech could be enhanced,

before the recognition procedure.

6.2. Experimental results

We apply the detection algorithm based on

noise statistics, and the proposed denoising tech-

nique in the context of the GSM database.
The SND system is applied to this data, using

the noise statistical criterion based detection

algorithm. Then the proposed denoising technique

is applied to the SND outputs, in order to reject

the wrongly detected segments of noise, and to

enhance the corrupted speech. For wavelet trans-

form, we use a 10-tap Daubechies filter (Daube-

chies, 1988), with a decomposition depth of 12
(i.e., 12 decomposition levels).

The method, described above, is evaluated in

terms of the percentage reduction of detection er-

rors. A complete evaluation could be performed in

terms of recognition performance, in order to

quantify the enhancement effect.

Despite the robustness of the SND algorithm,

the output of the SND contains some remaining

non-speech segments. In our example, using the
algorithm based on noise statistics, 14.5% of the

detected segments are non-speech. In particular,

25% of them are due to GSMN and 18.6% are

BNs. The post-processing technique, introduced in

this paper, allows a significant reduction of non-

speech wrongly detected segments (particularly,

GSMN and BNs), as it is shown in Table 1.

Fig. 12. (a) A speech segment and (b) the corresponding distribution of the energy in the sub-bands.M1 is reached in level 4, andM2 in

level 12. M1 is much higher than M2.

Table 1

Evaluation results in GSM environment

Detected

segments

Non-

speech (%)

GSMN

(%)

BN

(%)

Speech

(%)

Indoor 42 71 15 0.5

Outdoor 34 67 16 0.4

Stopped Car 28 76 5 0.6

Running Car 28 48 16 0.2

We give the number of segments rejected by the denoising post-

processing of the detector�s output. We also give the corre-

sponding reductions with respect to the initial results of the

SND system.
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This table shows that the proposed denoising

technique results in a reduction of 46% of non-

speech wrongly detected segments (particularly,

69% reduction of GSMN and 9% reduction of
BNs). However, some speech segments were also

rejected. The analysis of these misrejected speech

segments reveals that the corresponding speech is

highly corrupted by noise. So, they are very

unlikely to be correctly recognized. Hence, this

misrejection would not decrease the overall rec-

ognition performances.

In the following, we will study the behavior of
this denoising technique in different call environ-

ments.

6.3. Results in adverse call environment

We have shown above (Section 5.3) that the

considered SND system has different performance

according to call environment. Hence, we obtain

more or less wrongly detected segments of noise.

Consequently, the proposed post-processing could

have different behavior according to the call envi-

ronment. The results obtained with this technique
applied as a post-processing of the SND algorithm

mentioned above (based on noise statistics) are

given in Table 2, separately for each condition.

The results are given in terms of percentage of

rejected segments (non-speech, GSMN, BNs and

speech).

From Table 2, we notice the important rejection

rates of the non-speech wrongly detected seg-
ments. However, these rates are different according

to the call environment and to the kind of noise.

Hence, the rejection rates for GSMN are bigger

than for BNs, and we reject more GSMN in quiet

environments (indoor and stopped car) than in

noisy environments (outdoor and running car).

This is due to the fact that a detected segment
containing GSMN (that contains also some frames

before and after the noise itself) in a quiet com-

munication is less corupted by the BN. So, the

efficiency of the rejection procedure is more im-

portant for GSMN, particulary in quiet environ-

ment.

7. Conclusion

In order to improve the performance of speech
recognition systems, this paper dealt with the SND

robustness to noise. Several solutions were pro-

posed.

First, pre-processing techniques were consid-

ered. Spectral subtraction was shown to reduce the

effect of noise in GSM communications, which

improved the speech detection, and, consequently,

the global recognizer performance.
Then, two detection algorithms based on sta-

tistical criteria were introduced. One using noise

statistics, and the other is based on noise and

speech statistics.

Finally, a post-processing technique using a

wavelet based denoising was applied on the ob-

tained detected segments. It resulted in a reduction

of almost 50% of wrongly detected non-speech
segments.

The different proposed solutions were evaluated

in adverse call conditions over the cellular GSM

network. The different SND algorithms were also

evaluated in the PSN context, in order to check

their consistency.

In conclusion, the different proposed solutions

increase more or less the SND performance ac-
cording to the call environment. Important im-

provements are noticed in noisy environments,

such as outdoor or running cars. Incorporating a

pre-processing technique like spectral subtraction

enhances the improvements. Also, the application

of the post-processing technique introduced in this

paper allows the major portion of the wrongly

detected segments to be rejected, so improving the
final detection results.

Table 2

Evaluation results in several call environments

Segments Non-

speech

GSMN BN Speech

Number of

detected segments

2545 882 656 2100

Number of

rejected segments

1167 603 59 98

Reduction (%) 46 69 9 0.5

We give the reductions with respect to the initial results of the

SND system.
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