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Abstract—In the belief function theory, the concept of conflict
appearing while confronting several experts’ opinions can serve
for many purposes, and in particular it can be used as an
indicator of the relative reliability of the experts. The traditional
definition of conflict as the basic belief assigned to the empty
set during the combination has several issues and in particular
it may not adequately represent the disagreement between the
experts in presence.

Hence, we propose some alternative measures of conflict as
the distance between belief functions. These measures of conflict
are further used for an a posteriori estimation of the relative
reliability between the sources of information. This estimation of
the reliability does not need any training or prior knowledge and
can then be used to discount the unreliable sources before the
combination step. These measures are evaluated and debated on
random basic belief assignments and on real radar data.
Keywords: Belief functions theory, conflict, distance, dis-
counting.

I. INTRODUCTION

Many fusion theories have been studied for the combination
of the experts opinions such as voting rules [33], [15], pos-
sibility theory [34], [7], and belief functions theory [6], [25].
We can divide all these fusion approaches into four steps:
modelization, parameters estimation depending on the model
(not always necessary), combination, and decision. The most
difficult step is presumably the first one. However, the conflict
between the expert’s responses can only be defined considering
the ensemble of the responses. This is the reason why it is
generally integrated in the combination step.

The voting rules are not adapted to the modelization of
conflict between experts. If both possibility and probability-
based theories can model imprecise and uncertain data at
the same time, in a lot of applications experts can express
their certainty on their perception of the reality. As a result,
probabilities-based theory such as the belief functions theory
is more adapted.

Belief function theory (also commonly referred to as evi-
dence theory or Dempster-Shafer theory) is one of the most
popular one among the quantitative approaches because it can
be seen as a generalization of others. Its strength lies in (1) its
richer representation of uncertainty and imprecision compared
to probability theory and (2) its higher ability to combine
pieces of information. In particular, a crucial task in infor-
mation fusion is the management of conflict between different

(partially or totally) disagreeing sources. Dempster’s rule is
the oldest combination rule of belief function theory [6] and
has been the subject of many discussion and critics, arguing
(for or against) a possible counter-intuitive behavior. As a
consequence, a plethora of alternative combination rules to
Dempster’s one were born, in particular proposing alternative
repartitions of conflict [32], [8], [28], [11], [29], [12], [26],
[10], [20], [4]. Last years some unification rules have been
proposed [30], [16], [1], [21].

The weight of conflict between some belief functions is
indeed an important quantity as it aims at representing the
disagreement between the corresponding sources of informa-
tion. In belief functions theory, the global conflict is tra-
ditionally defined by the weight assigned to the empty set
after a conjunctive rule, noted k. However, this quantity fails
to adequately represent the disagreement between experts in
particular when noticing that the conflict between identical
belief functions is not null due to the non-idempotence of the
majority of the rules (except the rules proposed in [4], [5]).
Intuitively, some experts expressing their opinion through the
same belief function should be in total agreement. Indeed, as
it has been noticed in [24], k includes an amount of auto-
conflict. Hence the majority of the combination rules does not
the difference between the conflict (global or local conflict)
and the auto-conflict due to the non-idempotence of the rules.

In a lot of applications, we cannot learn the reliability of
each expert, and this reliability cannot be considered before
the combination in a discounting procedure. The disagreement
between two experts is an indicator of the unreliability of at
least one of them: If they totally disagree then, at least one of
them is unreliable regarding its opinion, while if they totally
agree it can be assumed without any contradictory information
that both of them are reliable. Based on this interpretation of
the conflict between sources several combination rules have
been proposed to automatically and adaptively account for the
reliability of the sources [8], [10]. Adaptive combination rules
are alternatives to discounting operations when the reliability
of the sources cannot be estimated beforehand.

In this paper, we propose an estimation of the relative
reliability of a set of sources of information based on the
conflict between each other. We make the assumption that the
more one expert is in conflict with the others, the more he
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is unreliable, an assumption which implies another one i.e.,
that a majority of experts are reliable. This latter assumption
is currently made in a fusion process. In Section II, after
a recall of the theoretical background of the belief function
theory, we discuss the definition of the auto-conflict. In Section
III we argue that a distance between belief functions such as
the ones proposed in [13], [17] is better suited to quantifies
the disagreement between two experts. Hence, we propose
conflict measures based on this distance, illustrated with
randomly generated basic belief assignments. These conflict
measures are further used to estimate the reliability of the
sources as detailed in Section IV. The estimated reliability
assigned to each of the experts is finally used to discount the
corresponding belief functions expressing their opinion and
illustrated on randomly generated basic belief assignments.
We discuss of the interest of the discounting procedure for
the combination in terms of complexity. In Section V, the
proposed method is used to combine three classifiers for radar
targets recognition with real radar data obtained in anechoic
chamber. The three classifiers are reliable, hence we generate
reliable and not reliable experts to illustrate our approach.

II. BELIEF FUNCTION THEORY

A. Theoretical background

Let Θ be a frame of discernment. A basic belief assignment
(bba) m is the mapping from elements of the power set 2Θ

onto [0, 1] such that:

m(∅) = 0, and
∑
X∈2Θ

m(X) = 1. (1)

A focal element X is an element of 2Θ such that m(X) 6= 0.
Constraining m(∅) = 0 corresponds to a closed-world assump-
tion [25], while allowing m(∅) ≥ 0 corresponds to an open
world assumption [27]. In order to change from an open world
to a closed world assumption, one can simply add an element
to the frame of discernment.

From a given bba m, the corresponding credibility and
plausibility functions are respectively defined as:

bel(X) =
∑
A⊆X

m(A) (2)

and
pl(X) =

∑
A∩X 6=∅

m(A). (3)

The pignistic probability transformation [27] is generally
considered as a good basis for a decision rule. It is defined
for all X ∈ 2Θ, with X 6= ∅ by:

BetP(X) =
∑

Y ∈2Θ,Y 6=∅

|X ∩ Y |
|Y |

m(Y )
1−m(∅)

. (4)

The first as best known combination rule of the belief function
theory has been proposed by Dempster [6] and is defined for
two bbas m1 and m2, for all X ∈ 2Θ, with X 6= ∅ by:

mDS(X) =
1

1− k
∑

A∩B=X

m1(A)m2(B), (5)

where k =
∑

A∩B=∅

m1(A)m2(B) is generally called the

global conflict of the combination or the inconsistence of the
combination.

The problem enlightened by the now famous Zadeh’s ex-
ample is the repartition of the global conflict. Indeed, consider
Θ = {A,B,C} and two experts opinions given by m1(A) =
0.9, m1(C) = 0.1, and m2(B) = 0.9, m1(C) = 0.1, the
bba resulting in the combination using Dempster’s rule is
m(C) = 1.

In order to solve partially this paradox, Smets [28] proposes
to consider an open world, therefore the conjunctive rule is
non-normalized and we have for two basic belief assignments
m1 and m2 and for all X ∈ 2Θ by:

mConj(X) =
∑

A∩B=X

m1(A)m2(B) := (m1 ⊕m2)(X). (6)

k = mConj(∅) can be interpreted as a non-expected solution.
However this is still a problem for the combination of con-
flicting belief functions [31].

Yager [32] interpreted k as ignorance Θ and proposed the
rule given for two basic belief assignments m1 and m2 and
for all X ∈ 2Θ by: mY(X) = mConj(X),∀X ∈ 2Θ r {∅,Θ}

mY(Θ) = mConj(Θ) +mConj(∅)
mY(∅) = 0.

(7)

In [23], Murphy proposes a combination rule as the average
of the basic belief assignments:

mMean(X) =
1
M

M∑
i=1

mi(X). (8)

B. The auto-conflict

As observed in [17], the weight of conflict given by
k = mConj(∅) is not a conflict measure between the basic
belief assignments. Indeed, in case of non-idempotent rules,
the combination of identical basic belief assignments leads
generally to a positive value of k. To highlight this behavior,
we defined in [24] the auto-conflict which quantifies the
intrinsic conflict of a bba. The auto-conflict of order n for
one expert is given by:

an = (
n
⊕
i=1

m)(∅), (9)

where ⊕ is the conjunctive operator of Equation (6). The
following property holds:

an ≤ an+1, (10)

meaning that due to the non-indempotence of ⊕, the more m
is combined with itself the nearer to 1 k is, and so in a general
case, the more the number of experts is high the nearer to 1
k is.

In order to study the distribution of the auto-conflict we
randomly generated non-dogmatic belief functions (i.e. such
that m(Θ) 6= 0), considering all the singletons of Θ and the
ignorance Θ itself as only focal elements. Figure 1 shows the
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average of the auto-conflict over 1000 masses according to the
order n and for different cardinalties of Θ. It appears that the
auto-conflict comes quickly near to 1 according to |Θ| and
the order n. Figure 2 focuses on the distributions of the auto-
conflict for |Θ| =3, 4, 5 and 6 and for an integer n ∈ [2, 7].
For |Θ| ≥ 4 and n ≥ 4 the distribution can be approximated

by a function of the form of
1

1− exp(x)
. This shows once

again that the auto-conflict tends quickly to 1.

Figure 1. Average of the auto-conflict for randomly generated bbas.

Figure 3 considers the average of the conflict k for succes-
sive random-generated masses according to both |Θ| and the
number of experts n. We can note that k tends more quickly
toward 1 than the auto-conflict. The distribution form of k
is also very similar to the distribution of the auto-conflict
for a given order n. These results illustrate that k does not

Figure 3. Average of the conflict for randomly generated bbas.

adequately defines a conflict measure between a set of experts.
Although we must take into account the internal inconsistency
k in the combination, we also want to take into account the
conflict among the experts.

III. CONFLICT MEASURE

A. Distance between experts for quantifying the conflict

Rather than the measure k, we propose here to define the
conflict between experts opinions through a distance between

their respective bbas. Hence, if the opinions of two experts are
far from each other, we consider that they are in conflict.

We use in this paper the distance defined in [13], distance
used in several works [2], [3], [5]. This distance is defined for
two basic belief assignments m1 and m2 by:

d(m1,m2) =

√
1
2

(m1 −m2)tD(m1 −m2), (11)

where D is an 2|Θ| × 2|Θ| matrix whose elements are:

D(A,B) =


1, ifA = B = ∅,

|A ∩B|
|A ∪B|

, ∀A,B ∈ 2Θ.
(12)

Our assumption is that the more two bbas are far from each
other and the more they are in conflict. Hence, the conflict
measure between 2 experts can be defined by:

Conf(1, 2) = d(m1,m2). (13)

To assign a weight to each expert, we must quantify how
much a given expert in a set of experts E = {1, . . . ,M} is
in conflict with the rest of the set. Thus, we can define the
conflict measure between one expert i and the other M − 1
experts by:

Conf(i, E) =
1

M − 1

M∑
j=1,i6=j

Conf(i, j). (14)

Another possible definition is:

Conf(i,M) = d(mi,mM ), (15)

where mM is the bba of the artificial expert representing
the combined opinions of all the experts in E except i. The
combination referred here can be the conjunctive combination
(6), the normalized conjunctive combination (5), the Yager’s
rule (7), the average of the bbas (8), etc. Which combination
rule to choose for computing mM is not obvious.

Here in the extension of the conflict measure from two bbas
to M bbas, we make the implicit assumption that more than
half of the number of experts are reliable. Indeed, one expert,
reporting a bba m, is in conflict with the others, if the bba m
is far away from the bbas reported by the other experts.

B. Simulations

Let us consider 130 experts expressing their opinions by
means of belief functions defined on 2Θ with Θ = {S1, S2}.
We randomly generated bbas for 100 experts assigning a mass
to both S1 and Θ and 30 experts assigning a mass to both
S2 and Θ. Figure 4 presents the conflict obtained for each
expert according to the mass on S1 and S2 given by each
expert for different ways to calculate the conflict (i.e. using
different combination rules and the mean of conflicts). We
considered the conflict measures defined by Equation (14) and
by Equation (15) with the conjunctive rule (6), the normalized
conjunctive rule (5), the Yager’s rule (7) and the average of the
bbas (Equation (8)). Because of the high number of experts,

1005



Figure 2. Distributions of the auto-conflict according to |Θ|.

Figure 4. Conflict measure according to the mass on S1 and S2 for different
combination rules.

the value of k is close to 1. Hence, the conjunctive and the
normalized conjunctive rules do not work well. Yager’s rule
transfers k to Θ and then the conflict of one expert according
to Equation (15) becomes linear with respect to the mass of Θ
(and so with respect to the singleton S1, next S2 because we
have only two focal elements). In this case with many experts
only the conflict given by Equations (14) and (15) with the

mean of the bbas lead to good results. Here, some experts are
not sure because the random mass on the singleton can be
smaller than 0.5 (and so the mass on Θ is bigger than 0.5).

Let us now consider a sightly different example: Over the
130 randomly generated experts, we only keep the experts
whose masses assigned to singletons are higher than 0.5.
Remains 44 experts expressing their opinions in favor of S1

and 18 on S2. Figure 5 presents the obtained conflict using
the same method than for Figure 4. Here the conflict given
by Equations (14) and (15) together with the use of the mean
of the bbas leads to a separation between the two groups of
experts. Indeed, the threshold for the first group is around 0.5
while it is around 0.4 for the second one.

We now consider only 5 experts whose respective bbas
are given in Table I: 3 experts are very favorable to S1 and
2 to S2. We note that even with few experts, the conflicts
given by Equation (15) with the conjunctive, the normalized
conjunctive and Yager’s rules are conclusive. Moreover, with
Equations (14) and (15) with the mean of the bbas, the
conflicts for the three experts favorable to S1 are weaker than
the conflict for the two experts favorable to S2.

Let us now consider the example of Table II with 6
experts: Two experts express a favorable opinion toward S1
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Figure 5. Conflict measure according to the mass on S1 and S2 for different
ways to calculate the conflict for sure experts.

Experts
1 2 3 4 5

S1 0.8147 0.9058 0.9134 0 0
S2 0 0 0 0.9706 0.9572
S1 ∪ S2 0.1853 0.0942 0.0866 0.0294 0.0428
mM with mConj 0.9426 0.9615 0.9629 0.9678 0.9700
mM with mDS 0.7831 0.8827 0.8916 0.9521 0.9307
mM with mY 0.6626 0.7354 0.7413 0.7833 0.7747
mean of conflict 0.3888 0.3903 0.3930 0.5582 0.5539
mM with mMean 0.4282 0.4779 0.4826 0.6965 0.6874

Table I
BBAS AND RESULTING CONFLICT FOR ONLY 5 EXPERTS.

with approximately the same mass 0.7, two experts express
a favorable opinion toward S2 with approximately the same
mass 0.65, one expert express a favorable opinion toward S2

with a high mass 0.93 and the last expert has a high ignorance.
In this example, one more time, the conjunctive rule does
not work well. Dempster’s rule provides low conflict for both
experts (3 and 4) with the same mass for S2 and a high conflict
for both experts 1 and 2. The Yager’s rule provides a very low
conflict for the expert number 6 and the higher conflict for the
expert 5. The conflict measures given by the Equation (14)
are very near for the 6 experts, with the lower conflict for the
experts 3 and 4. The last conflicts given by the Equation (15)
with the mean of the bbas, are low for the experts 3, 4 and 6.

Experts
1 2 3 4 5 6

S1 0.7060 0.6948 0 0 0 0.1082
S2 0 0 0.6557 0.6787 0.9340 0.1386
S1 ∪ S2 0.2940 0.3052 0.3443 0.3213 0.0660 0.7532
mConj 0.7930 0.7940 0.8351 0.8368 0.8590 0.8577
mDS 0.8538 0.8491 0.2129 0.1997 0.5127 0.6342
mY 0.5599 0.5503 0.4680 0.4866 0.6890 0.1009
eq. (14) 0.4482 0.4441 0.3354 0.3390 0.4551 0.4011
mMean 0.5151 0.5077 0.3036 0.3181 0.5186 0.3224

Table II
BBAS AND RESULTING CONFLICT FOR ONLY 6 EXPERTS.

The expert 5 is sure of its response S2, but the other experts

3 and 4 are not sure. Hence, the conflict of the expert 5
can be high, even he seems to say true. The expert 6 with
a lot of ignorance can be in small conflict with the other
experts because his bba is different. The distance given by
the Equation (11) takes into account the specificity of the
responses with the calculus of the matrix D given by the
Equation (12). And so, the conflict measure takes also into
account the specificity. Here, we could change the definition
of the matrix D or the distance to weight more the higher
specificities.

IV. RELIABILITY BASED ON CONFLICT MEASURE

The conflict appearing while confronting several experts’
opinions can be used as an indicator of the relative reliability
of the experts. We have seen that there exist many rules in
order to take into account the conflict during the combination
step. These rules do make not the difference between the
conflict (global or local conflict) and the auto-conflict due
to the non-idempotence of the majority of the rules. We
propose here the use of a conflict measure in order to define a
reliability measure, that we consider before the combination,
in a discounting procedure.

When we can quantify the reliability of each expert, we can
weaken the basic belief assignment before the combination by
the discounting procedure:{

mα
i (X) = αimi(X), ∀X ∈ 2Θ r {Θ}

mα
i (Θ) = 1− αi(1−mi(Θ)). (16)

αi ∈ [0, 1] is the discounting factor of the expert i that is, in
this case, the reliability of the expert i, eventually as a function
of X ∈ 2Θ.

Other discounting procedures are possible such as the
contextual discounting [22], or a discounting procedure based
on the credibility or the plausibility functions [35].

A. Reliability estimation
According to the applications, we can search to learn the

discounting factors αi for example from the confusion matrix
[19]. In a lot of applications, we cannot learn the reliability of
each expert. A general approach in order to evaluate without
learning the discounting factor is given in [9]. For a given bba
the discounting factor is obtained by the minimization on α
of a distance given by:

Distαi =
∑
A∈Θ

(BetPi(A)− δA,i)2
, (17)

where BetPi is the pignistic probability (Equation (4)) of the
bba given by the expert i and δA,i = 1 if the expert i supports
A and 0 otherwise.

This approach is interesting with the goal of a pignistic
decision. However, if the expert i does not support a singleton
of Θ, the minimization on αi does not work well.

In order to combine the bbas of all experts together, we
propose here to estimate the reliability of each expert i from
the conflict measure Conf between the expert i and the others
by:

αi = f(Conf(i,M)), (18)
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where f is a decreasing function. We can choose:

αi =
(
1− Conf(i,M)λ

)1/λ
, (19)

where λ > 0. We illustrate this function for λ = 2 and
λ = 1/2 on figure 6. This function allows to give more
reliability to the experts with few conflict with the other.

Figure 6. Reliability of one expert according to the conflict of the expert
with the other experts.

Other definition are possible. The credibility degree defined
in [2], also based on the distance given in the Equation (11),
could also be interpreted as the reliability of the expert.
However the credibility degree is integrated directly in the
combination with a weighted average. Our reliability measure
allows the use of all the existing combination rules.

If we take again the previous example given by the table II,
the obtained values of αi are given in the table III.

Experts
1 2 3 4 5 6

mConj 0.6092 0.6079 0.5501 0.5475 0.5120 0.5142
mDS 0.5206 0.5282 0.9771 0.9799 0.8586 0.7732
mY 0.8286 0.8350 0.8837 0.8736 0.7248 0.9949
eq. (14) 0.8939 0.8960 0.9421 0.9408 0.8904 0.9160
mMean 0.8571 0.8615 0.9528 0.9481 0.8550 0.9466

Table III
RELIABILITY MEASURE BASED ON CONFLICT MEASURES DEFINED BY THE

EQUATION (19) WITH λ = 2 FOR ONLY 6 EXPERTS.

In the the special case of only 2 experts, the conflict measure
is directly given by the Equation (13) and is the same for
both experts. Hence, in the one hand, if the conflict measure
is high (i.e. the distance between the two experts is high), the
reliability measures will be weak. So we increase the mass
on the ignorance for both basic belief assignments. In the
other hand, if the he conflict measure is weak (that means that
both experts say approximately the same thing) the reliability
measures will be weak. Hence, we consider both bbas in the
combination rule.

B. Complexity interest for the combination

Unlike conflict redistributing combination rules, the dis-
counting operation is applied as a separated step. So, if

we use an associative combination rule, we can proceed by
taking M experts one by one, and make M − 1 calls to a
combination procedure between two experts instead of one
call to a combination procedure between M experts, usually
a lot more time consuming.

Based on the conjunctive rule (6), one can build a conflict
redistribution rule, which is non-associative, but can take any
number of experts in parameter. Such a rule is illustrated by
the PCR6, in [20].

mPCR6(X) = mConj(X) +
M∑
i=1

mi(X)2

∑
M−1
∩
k=1

Yσi(k)∩X=∅

(Yσi(1),...,Yσi(M−1))∈(2Θ)M−1


M−1∏
j=1

mσi(j)(Yσi(j))

mi(X)+
M−1∑
j=1

mσi(j)(Yσi(j))

,
(20)

where Yj ∈ 2Θ is the response of the expert j, mj(Yj) is the
associated belief function and σi counts from 1 to M avoiding
i: {

σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i. (21)

Let n be the cardinal of Θ, and p a “standard” number of
focal elements for an expert.

To combine the bbas from two experts, most rules will use
O(p2) elementary operations. If the experts only use singletons
and Θ as focal elements, the resulting bba has less than
n + 2 focal elements, including ∅ and the ignorance. When
considering larger input focal elements or other combination
rules, like Dubois & Prade’s [8] or the disjunctive rule, one
can get up to p2 focal elements. The mean operator is cheaper,
with only O(p) operations, and O(p) focal elements.

Calculating d(m1,m2) by the formula (11) may be costly.
The matrix D has 22n entries; half of them are zero, and a half
of the remaining ones are determined by symmetry properties.
The memory needed to simply store the whole matrix is 22n−2.
However, the vector m1 − m2 has only at most 2p non-zero
entries over the 2n it contains. So d(m1,m2) can be calculated
in O(p2) operations.

The bba mM will typically have more focal elements than
the input ones. We will consider this parameter as O(n),
reflecting the style of the experts of the preceding examples.
So calculating d(mi,mM ) costs O(np) operations.

Therefore, the discounting procedure needs O(Mnp) for
calculating mM , O(n2 +Mp)) operations for calculating the
αi by the formula (19), and O(Mp) operations to apply
the procedure (16). We just have to combine the discounted
bbas (O(Mnp) operations) to obtain the result. The overall
complexity of the discounting combination is O(Mnp).

Now, if we compute the αi with the Equation (17), consid-
ering that the calculus of the minimum needs K operations,
the distance Distαi costs O(np) operations and so we obtain
αi with O(np+Kp).
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As the auto-conflict of order k for one expert can be
calculated in O(kp) operations, taking it into account during
the procedure does not make it more costly.

Conflict redistributing rules are not associative: all the
experts must be combined in an unique step. It takes O(MpM )
operations.

Both procedures tend to the same result: discounting en-
forces ignorance for minority experts, giving more weight to
a focal element A of an other expert, when assigning the
mass m1(Θ)m2(A) to A = A ∩ Θ. Conflict redistribution
enforces the majority when a local conflict arises around the
focal element X of the expert k:

M−1⋂
k=1

Yσi(k) ∩X = ∅. (22)

So the discounting procedure should be preferred in the
cases where many experts (typically, more than 5) are implied.
Conflict redistribution should be preferred when a sharp treat-
ment of local conflict is needed, to avoid information loss. It
allows to extract the real part of truth when experts are only
partially wrong.

V. ILLUSTRATIONS

As an illustration, we consider 5 scale reduced (1:48) targets
(Mirage, F14, Rafale, Tornado, Harrier) to classify. The real
data were obtained in the anechoic chamber of ENSIETA
(Brest, France) using the experimental setup [18].

Each target is illuminated in the acquisition phase with
a frequency stepped signal. The data snapshot contains 32
frequency steps, uniformly distributed over the band B =
[11650, 17850]MHz, which results in a frequency increment
of ∆f = 200MHz. Consequently, the slant range resolution
and ambiguity window are given by:

∆RS = c/(2B) ' 2.4m, WS = c/(2∆f) = 0.75m (23)

The complex signature obtained from a backscattered snapshot
is coherently integrated via FFT in order to achieve the slant
range profile corresponding to a given aspect of a given target.
For each of the 10 targets 150 range profiles are thus generated
corresponding to 150 angular positions, from -5◦ to 69.5◦, with
an angular increment of 0.50.

We classify these data with three supervised classifiers (a
classical k-nearest neighbor, a fuzzy k-nearest neighbor [14],
and a multi perceptron [18]). The training set is formed by
randomly selecting 2/3 of the range profiles, the others being
considered as the test set. Then we fuse the three responses
of the classifiers. We can interpret the outputs of the three
classifiers as the mass of the target-singleton. We just apply
a discounting with α = 0.95 in order to combine these basic
belief assignments.

Hence with 250 range profiles for testing, we obtain the
following good classification rates: 96.4% for the classical k-
nearest neighbor, 92.4% for the fuzzy k-nearest neighbor and
82.0% for the multi perceptron. We can interpret these rates
as reliabilities of the three classifiers.

Table IV gives the reliability measure based on the conflict
measures defined by the Equation 19 with λ = 1.5 for the
three classifiers. We can observe that the reliability of the multi
perceptron is the lowest, except for the reliability given by the
mConj. This is the classifier given the lowest rate. The good
classification rates of the k-nearest neighbor and the fuzzy k-
nearest neighbor are very near. The reliabilities for these both
classifiers are inversed, compared to the good classification
rates, but are also very near.

Classifiers
k-nn fuzzy k-nn multi perceptron

mConj 0.8459 0.8682 0.8572
mDS 0.9655 0.9585 0.8634
mY 0.8854 0.9047 0.8693
eq. (14) 0.9686 0.9715 0.9406
mMean 0.9462 0.9572 0.8900

Table IV
RELIABILITY MEASURE BASED ON CONFLICT MEASURES DEFINED BY THE

EQUATION 19 WITH λ = 1.5 FOR THE THREE CLASSIFIERS.

In fact, the three classifiers are quite reliable. To study the
proposed reliability measure, we generate random bbas.

In the first case (Table V), we generate bbas with only two
focal elements with Θ = {C1, C2, C3}; one focal element
is C1 for the three fist bbas and C3 for the fourth one, and
the second focal element is Θ. The table shows that all the
reliability measures give the expert 4 not reliable in this case.

Experts
1 2 3 4

mConj 0.6986 0.7156 0.7204 0.4438
mDS 0.7637 0.8061 0.7932 0.4438
mY 0.8468 0.8683 0.8599 0.4438
eq. (14) 0.8904 0.8851 0.8891 0.7886
mMean 0.8782 0.8647 0.8766 0.6809

Table V
RELIABILITY MEASURE BASED ON CONFLICT MEASURES DEFINED BY THE
EQUATION 19 WITH λ = 1.5 FOR THE FOUR EXPERTS (THREE RELIABLE

AND ONE NOT).

In the second case (Table VI), we generate bbas with only
four focal elements with Θ = {C1, C2, C3}; one focal element
is C1 for the three fist bbas and C3 for the fourth one, and
another focal element is Θ, the two other are in 2Θ. In this
case, the expert 4 is still the less reliable, but the difference
with the reliability of the other experts is weaker. Indeed, the
generated bbas for the first three experts can provide a bigger
mass on C3 than on C1, and so the bbas can be very similar
in some cases than the bbas of the expert 4.

VI. CONCLUSIONS

In this paper, we proposed some conflict measures of
a group of experts based on the distance of basic belief
assignments. In particular, the conflict is evaluated for one
expert i against the rest of the group according to two distinct
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Experts
1 2 3 4

mConj 0.6847 0.7112 0.6750 0.6506
mDS 0.7847 0.7975 0.7860 0.7136
mY 0.8461 0.8441 0.8439 0.8333
eq. (14) 0.8873 0.8895 0.8870 0.8752
mMean 0.8703 0.8759 0.8665 0.8430

Table VI
RELIABILITY MEASURE BASED ON CONFLICT MEASURES DEFINED BY THE
EQUATION 19 WITH λ = 1.5 FOR THE FOUR EXPERTS (THREE RELIABLE

AND ONE NOT).

approaches: (1) the average of all the distances between i’s
bba and each bba of the other experts of the group (except
i), and (2) the distance of i’s bba to the bba obtained by
the combination of the bbas of the other experts (except i).
These measures of conflict are further used for an a posteriori
estimation of the relative reliability between the sources of
information: The more i is in conflict with the rest of the
group of experts, the less i is reliable.

Our proposed measures of conflict and the associated re-
liability are evaluated and debated on random basic belief
assignments but also on a real radar target recognition applica-
tion. It appears that the reliability estimation provides a good
alternative measure to be used in the discounting procedure on
belief functions when the reliability is unknown and cannot be
estimated a priori. Moreover, beside their link to the reliability
estimation, the proposed conflict measures could be employed
for example to alert the decision maker in a decision support
system.
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