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Each year, numerous segmentation and classi�cation algorithms are invented or reused to solve problems where

machine vision is needed. Generally, the e�ciency of these algorithms is compared against the results given by

one or many human experts. However, in many situations, the location of the real boundaries of the objects as

well as their classes are not known with certainty by the human experts. Furthermore, only one aspect of the

segmentation and classi�cation problem is generally evaluated. In this paper we present a new evaluation method

for classi�cation and segmentation of image, where we take into account both the classi�cation and segmentation

results as well as the level of certainty given by the experts. As a concrete example of our method, we evaluate

an automatic seabed characterization algorithm based on sonar images.

1. INTRODUCTION

Image classi�cation and segmentation are two
fundamental problems in image analysis. Seg-
menting an image consists in dividing the image
into homogeneous zones delimited by boundaries
so as to separate the di�erent entities visible in
the image. Classi�cation consists in labeling the
various components visible in an image. A great
deal of segmentation and classi�cation methods
have been proposed in the last thirty years [1];
enumerating them all is not the purpose of our
paper. However, an important question to solve
is how to benchmark these methods and evaluate
their robustness with respect to a given real-life
application.
A typical example of the use of classi�cation

and segmentation is encountered in satellite or
sonar imaging, where an important use of the
data is to classify the types of soils present in
the images, for instance to build maps. As the
amount of images gathered during a mission is
important, automatic recognition algorithms can
relieve human operators. Since the swath of the
sensor is wide, many types of soils can be en-
countered within a single image, and the classi-
�cation must be done on a local neighborhood.

This neighborhood can be either limited to a sin-
gle pixel, or often to a small tile of e.g. 16 � 16
or 32 � 32 pixels taken as the unit for the classi-
�cation algorithm. The boundaries between the
di�erent patches corresponding to a category of
soil are a form of segmentation, which is here an
implicit byproduct of the classi�cation. In other
applications, segmentation can come �rst so as to
isolate entities which will be labeled later.
A di�culty raised in these applications is the

lack of ground truth which could be used to eval-
uate the result of the classi�cation. The real ref-
erence classes must be estimated by human ex-
perts from the data themselves. However, the im-
ages are di�cult to read since they are corrupted
by many phenomena and the estimation of the
classes by the human expert will be highly subjec-
tive and with a varying level of uncertainty. In the
case of the automatic seabed classi�cation, which
we will use as our reference example throughout
this paper, images are especially hard to interpret
due to many imperfections [2]. To reconstruct the
image, a huge number of parameters (geometry of
the device, coordinates of the ship, movements of
the sonar, etc.) are taken into account, but these
data are polluted with a large amount of sensor
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noise. Plus, other phenomena such as multipath
signal propagation (caused by re
ection either on
the bottom or the surface), speckle, and the pres-
ence of fauna and 
ora (e.g. shadows of �shes on
the sea bottom), will all augment the di�culty of
interpretation of the image. Consequently, di�er-
ent experts can propose di�erent classi�cations of
the image. Thus, in order to evaluate automatic
classi�cation, we must take into account this dif-
ference and the uncertainty of each expert. Fig-
ure 1 exhibits the di�erences between the inter-
pretation and the certainty of two sonar experts
trying to di�erentiate the type of sediment (rock,
cobbles, sand, ripple, silt) or shadow when the in-
formation is invisible (each color correspond to a
kind of sediment and the associated certainty of
the expert for this sediment expressed in term of
sure, moderately sure and not sure).

Figure 1. Segmentation given by two experts.

We propose in this article a new approach for
image classi�cation and segmentation taking into

account the information giving by multiple ex-
perts and the certainty of the given information.
Classical evaluations of the classi�cation and seg-
mentation do not take into account the uncer-
tain and imprecise labels in the reference image
provided by an expert. We think that we have
to consider these kind of labels in our evaluation
approach. In section 2 we show how to integrate
the expert certainty in the confusion matrix and
so to deduce a good classi�cation rate and er-
ror classi�cation rate. Moreover, our thesis is
that global image classi�cation evaluation must
be made not only by evaluating the classi�cation
on considered units (with the confusion matrix)
but also by evaluating, at the same time, the in-
duced segmentation. In section 3, we propose two
new distance-based measures in order to evaluate
well and mis-segmented pixels by taking into ac-
count both the location of the borders and the
expert certainty. Note that another important
criterion to evaluate classi�cation/segmentation
approaches is the evaluation of the complexity of
the algorithms [3], but we do not consider it in
this paper. Finally, our evaluation is illustrated
in section 4 on real sonar images acquired in a
real, uncertain environment.

2. CLASSIFICATION EVALUATION

Traditional classi�cation systems can usually
be described as a three-tiered process. First, sig-
ni�cant features are extracted from the images
to classify. These features are widely di�erent,
depending on the application; they are generally
described using a small set of abstract numeri-
cal measures. For example, used features may be
the local luminance, the texture (described with
measures such as the entropy, the co-ocurrence
matrices, etc), the contours (described with their
length, their orientation, their relative position to
other contours, etc) [1]. Most of the time, a sec-
ond stage is necessary to reduce these features,
because they are too numerous. In the third
stage of the algorithm, the numerical descrip-
tors are fed to classi�cation algorithms, which are
application-independent, such as Support Vector
Machine [4{6], neural networks [2,6{8], k-nearest
neighbors [9], etc. The classi�cation algorithms
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will decide, depending on their entries, which is
the class of the image.
Hence, we have to evaluate these classi�cation

algorithms in order to compare their robustness
in a given application. The classical approach is
based on the confusion matrix and does not take
into account uncertain labels. We propose here
a new confusion matrix and good classi�cation
and error rates taking into account these kind of
labels and also the inhomogeneous units de�ned
forwards.
The proposed method of evaluation in this sec-

tion, can be applied for the evaluation of a classi�-
cation algorithm in every domain where uncertain
labels are provided. We do not consider here the
problem of the learning on uncertain and impre-
cise labels [10{12]: the classi�cation can be made
either by this kind of algorithms or by others.

2.1. Classical Evaluation

The results of one image classi�cation can be
observed and visually compared to the reality.
But in order to evaluate a classi�cation algorithm,
many di�erent con�gurations and tests must be
considered. Classi�cation algorithms can yield
very variable results depending on the sample.
Generally classi�cation algorithms evaluation is
conducted by the confusion matrix. The confu-
sion matrix is composed by the number cmij of
elements from the class i classi�ed in the class j.
In order to obtained rates, which are easier to in-
terpret, we can normalize this confusion matrix
by:

Ncmij =
cmijPN

k=1 cmik

=
cmij

Ni

; (1)

with N the number of considered classes and Ni

the number of element from the true class i. From
this normalized confusion matrix a good classi�-
cation rate vector can be written as:

GCRi = Ncmii; (2)

and an error classi�cation rate vector as:

ECRi =
1

2

0
@ NX
j=1;j 6=i

Ncmij +

NX
j=1;j 6=i

Ncmji

N � 1

1
A :(3)

This error classi�cation rate is the mean of the
two errors corresponding respectively to the ele-

ments from a given class i falsely classi�ed as ele-
ments of another class (�rst term), and to the ele-
ments classi�ed in a given class j but being from
another class i (second term). These errors are
also called errors of the �rst and second kind. We
do not have to normalize the �rst term because of
the normalization of the confusion matrix on the
rows, but the second term must be normalized
by the number of rows minus one (because of the
Ncmii term corresponding to the good classi�ca-
tion). Note that other error rates can be de�ne
(see e.g. [10]).
We have seen that image classi�cation algo-

rithms evaluation must be made not only on one
image but on the whole image database. As a
trivial consequence, we have to consider a non-
normalized confusion matrix on each image and
normalize the sum of the matrix confusion on all
images of the database.

2.2. Evaluation with expert information

Consider a general case where information is
given by the expert on each pixel and the clas-
si�cation algorithm is made on an unit of n � n
pixels. In such a case, if a n � n tile is consid-
ered, more than one class can be present (we call
it patch-worked tile or inhomogeneous unit), and
the classi�cation algorithm can �nd only one of
these class. In order to take into account the last
example, we consider that if the classi�cation al-
gorithm �nds one of these classes on the tile, the
algorithm is right in the proportion of this class
found in the n � n tile and it is false in the pro-
portion of the other classes in the tile. For in-
stance, imagine the case where the expert con-
siders a 16 � 16 tile and declares that 156 given
pixels belong to class 1, and 100 other pixels be-
long to class 3. If the classi�cation algorithm �nds
the tile belongs to class 1, the confusion matrix
will be computed by cm11 = cm11 +156=256 and
cm31 = cm31+100=256. Hence the confusion ma-
trix is not composed of integer numbers and Ni is
also not integer, but the sums of column are still
integer.
Now consider the case where the expert gives

the class with a certainty grade. For instance,
the operator can be moderately sure of his choice
when he labels one part of the image as belong-
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ing to a certain class, and be totally doubtful on
another part of the image. In our classi�cation
evaluation we must not take equally these two
references. Indeed classical confusion matrices
imply that the reality is perfectly known; this,
unfortunately, is not the case in many real appli-
cations. We propose to represent this di�erence
of information by di�erent weights corresponding
to the di�erent certainty grades that are consid-
ered. For example, if three grades of certainty
(sure, moderately sure and not sure) are con-
sidered, we can provide respectively the weights:
2/3, 1/2 and 1/3. In the confusion matrix, such
weights could be integrated easily in the general
sum. If one expert labels a tile as belonging to
class 1, with a moderate certainty, and if the clas-
si�cation algorithm �nds the class 1, considering
the previous given weights, the confusion matrix
will be updated such as: cm11 = cm11 + 1=2. If
the classi�cation algorithm �nds the class 2 on
the considered tile, the confusion matrix becomes
cm12 = cm12 + 1=2. Hence the sums of column
are not integer anymore.
In order to take into account the referenced im-

ages provided by di�erent experts, we can com-
pare the classi�ed image with all the expert-
referenced images. Hence we obtain as many con-
fusion matrices as experts, and we can simply
combine them by addition.
By the simple fact that we add the non-

normalized confusion matrices, we weight the ob-
tained results by the image size or the considered
unit number.
Consequently, in order to obtain rates, we can

normalize the obtained confusion matrix with
equation (1) and calculate the good classi�cation
rate vector with equation (2) and the error classi-
�cation rate vector with equation (3). Of course
these rates are not percentages anymore. For in-
stance, the good classi�cation rate is not a per-
centage of well-classi�ed units anymore, because
the weights given by the inhomogeneous units or
by expert certainty are rational.
In conclusion of this section: the interest of

these newly obtained confusion matrix, good clas-
si�cation rate and error classi�cation rate is that,
they give a good evaluation of classi�cation tak-
ing into account the inhomogeneous units and un-

certainty of the experts. This approach can be
applied in other applications than image classi�-
cation, in fact in every domain where we try to
classify uncertain elements.

3. SEGMENTATION EVALUATION

Segmentation can either be obtained as a
byproduct of the classi�cation, as shown above,
or be used as the �rst step of an image processing
pipeline. Many methods of image segmentation
and edge detection have been proposed [13{17].
It is important to be able to benchmark these
methods and to evaluate their robustness; but
to do that, measures are needed so as to have
an objective means to judge the quality of the
segmentation. No perfect measure exists today,
and existing measures are not well satis�ed, this
is why we can imagine fusing the segmentation
evaluation approaches [18].
On the one hand the image classi�cation meth-

ods are evaluated by the confusion matrix. Good
classi�cation rates and error rates are usually cal-
culated from this matrix. Note that in order to es-
tablish the confusion matrix, the real class of the
considered units of the images need to be known.
This gives only an evaluation of the classi�cation
approach on considered units of the image, but
does not give an evaluation of the produced seg-
mentation.
On the other hand, segmentation evaluation

cannot be made only by visual comparison be-
tween the initial image and the segmented im-
age. Many evaluation approaches have been pro-
posed for image segmentation [3,16,19{21]. We
can consider two cases: we do not have any a pri-

ori knowledge of the correct segmentation, and
we have an a priori knowledge of the correct seg-
mentation. In the �rst case, many e�ectiveness
measures based on intra-region uniformity, inter-
region contrast and region shape have been pro-
posed [3]. The second case supposes to get refer-
enced images. In a real application, experts must
manually provide the image segmentation via a
visual inspection. [3] gives a review of usual dis-
crepancy measures based on di�erent distances
(sometimes expressed in terms of probability) be-
tween the segmented-pixel and the referenced-
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pixel.
Most of the time, only one measure of how

many pixels are mis-segmented is given. We, on
contrary, propose in this article a combined study
of one well-segmented pixel measure and a mis-
segmented pixel measure. Indeed, most of the
time, if a pixel is not mis-segmented, it is not nec-
essary well-segmented either. As a consequence,
we can have few mis-segmented pixels but also
few well-segmented pixels, which means that the
segmentation is not good overall.
In order to calculate confusion matrices we

need the a priori knowledge of the class for each
pixel or at least for each considered unit of the
image. Hence, experts have to give referenced
images, and we can consider to be in the second
case of segmentation evaluation that we described
above.
Before presenting our segmentation evaluation

method, we show how we can obtain easily a de-
ducted segmentation from an image classi�cation
based on the classi�cation on tiles. Next, the pro-
posed segmentation evaluation method is adapted
to every image segmentation and can take into ac-
count imprecise labels.

3.1. Deducted segmentation

Image classi�cation provides an implicit image
segmentation given by the di�erence of classes be-
tween two adjacent tiles. Hence a good image
classi�cation evaluation should take this segmen-
tation into account as well.
First of all, we have to de�ne the boundary

pixels given by the image classi�cation. We pro-
pose here to use a very simple approach: we will
take as boundary pixels, the pixels which neigh-
bor another class on the right or/and on the bot-
tom. For instance, on table 1 we give a dummy
segmented image with two classes given by � and
�. The classi�cation unit is here 4 � 4. The
boundary pixels are underlined.
Many approaches can be considered in order to

obtain boundaries without angular points. We
can consider for instance an interpolation be-
tween the 4-connexity or 8-connexity points [22].
This is not the subject of this paper; the reader
should keep in their mind that our segmentation
evaluation is general and can be applied to all

Table 1
Example of an obtained segmentation on image
with two classes given by � and �.

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

image segmentations given by boundary pixels.

3.2. Segmentation evaluation

We recall here that in our case, we have an a

priori knowledge of the correct or approximately
correct segmentation given by the experts. In
this case all evaluation approaches are based on
di�erent distances (or probabilities) between the
segmented-pixel and the referenced-pixel [3,23,24]
and most of the time only one measure of mis-
segmented pixel is given. We think that it is not
enough for a precise segmentation evaluation if
a pixel can be not mis-segmented, and also not
well-segmented. As we mentioned before, we can
have few mis-segmented pixels only with few well-
segmented pixels, and so the segmentation can-
not be considered right. So we propose a linked
study of two new measures: one well-segmented
pixel measure and one mis-segmented pixel mea-
sure. Moreover these two measures can take into
account the uncertainty of the expert on the po-
sition and on the existence of the boundaries if
this uncertainty can be expressed as a weight.

3.2.1. Well-detection boundary measure

The well-segmented pixel measure is a mea-
sure of how the boundary is well-detected and
the mis-segmented pixel measure tries to quan-
tify how many boundaries detected by the al-
gorithm to benchmark have no physical reality.
First, we search the minimal distance dfe between
each boundary pixel f found by the algorithm to
benchmark, and all the boundary pixels e pro-
vided by the expert. Hence the pixel e is a func-
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tion of f , and we should note it as ef , but in
order to simplify notations, it is referred as e in
the rest of paper. We take here an Euclidean dis-
tance but any other distance can be envisaged.
The certainty weight of the pixel e given by the
expert is noted as We. We de�ne a well-detection
criterion vector by:

DCf = exp(�(dfe �We)
2) �We: (4)

This criterion gives a Gaussian-like distribution
of weights with a standard deviation given by the
certainty weights as shown in �gure 2.

Figure 2. Distance weight for the well-detection
criterion.

The well-detection boundary measure is de-
�ned by the normalized well-detection criterion
given by:

WDC =

P
f DCf

(maxf (DCf ) �
P

eWe)
a : (5)

The normalization is made in order to obtain
a measure de�ned between 0 and 1. However,
in real applications, this criterion remains small
even for very good boundary detection. So we
take a = 1=6 in order to accentuate small values.
This criterion is not completely satisfying be-

cause it only takes into account the distance from
the found boundary to the contour provided by
the expert. However, the reference boundary also
has a local direction which is another information
we want to use. A boundary found by the algo-
rithm can come across a boundary given by the
expert orthogonally: in this case some pixels from
the found boundary are very near (in terms of
distance) to pixels from the given boundary but

we do not want to say this is a good detection.
We propose two ways to consider the direction of
boundaries.
In the �rst one, we count, for a given pixel f

of the found boundary, how many pixels from the
found boundary are linked by the minimal dis-
tance to the same pixel e of the referenced bound-
ary. This number is noted nef , e.g. on �gure 3
we have nef = 3 for three di�erent f . We rede�ne
the well-detection boundary measure by:

WDC =

P
f DCf=nef

(maxf (DCf=nef ) �
P

eWe)
a : (6)

Figure 3. Example of nef for three given f , the
found boundary is represented by green square
and the referenced boundary by black line.

The problem is that the number nef does not
represent necessarily a number of pixels on the
same boundary and takes well into account only
the orthogonal direction. However this measure
gives the best evaluation of the proportion of the
found boundaries.
The second method is based on the idea that

the local direction of the boundary should also be
taken into account: the direction of the detected
boundary and the direction of the boundary given
by the expert should be the same. Now, how does
one compute the direction of the boundary? Let
Ir denote the reference boundary image given by
the expert. Ir(i; j) = 0 if no boundary is detected
at pixel (i; j); Ir(i; j) = We otherwise, where We

is the weight of the pixel boundary e at location
(i; j) given by the expert. Image Ir can be seen
as a discrete 2-D function on which the gradient
�!g r = [@Ir=@x; @Ir=@y] can be computed. The
gradient has the property to be normal to iso-
values lines of Ir and will therefore be normal to
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the boundaries given by the expert. Similarly, one
can also compute the gradient �!g s of the found
boundary image. Then, a measure of correspon-
dence between the directions at pixel (i; j) can be
given by the absolute value of the normalized dot
product between the two gradients vectors1:

BD =
j�!g r:

�!g sj

jj�!g rjj:jj
�!g sjj

: (7)

However, as Ir is mostly �lled with zeros, the
gradient will have a negligible value at most lo-
cations. The farther a pixel is from a boundary
given by the operator, the lower the gradient at
that pixel will be, thus yielding a huge impreci-
sion on the local direction of the image. To solve
this problem, we used the Gradient Vector Flow
(GVF), �rst introduced by Xu and Prince [25].
For a boundary image I, the GVF is a vector �eld
�!
f = [u(x; y); v(x; y)] that is computed iteratively
so as to minimize the following cost function over
all the boundary image:

U =

ZZ �
�:(u2x + u2y + v2x + v2y) + : : :

+jj�!g jj2jj�!g �
�!
f jj2

�
:dx:dy: (8)

where � is a tunable weight, variables in indices
denote partial derivation with respect to that
variable, and �!g is the gradient of the image as
de�ned previously. This cost function was de-
vised so that on boundaries, where the gradient
is high (jj�!g jj ! 1) the energy remains bounded:

jj�!g �
�!
f jj must tend to zero if one wishes the inte-

grand to be minimized. Thus, on boundaries, the

GVF is equal to the gradient �eld. On the other
hand, for pixels far away from any boundary, the
gradient will tend toward zero, and the integrand
will be driven by the term �:(u2x+u

2
y+v

2
x+v

2
y). To

minimize it, the partial derivatives of the vector
�eld

�!
f must be null, which means that the GVF

extends the gradient by continuity to zones where

it would normally be negligible. The GVF is com-
puted both for the reference image and the image
obtained through segmentation. The measure of

1The notation \." for multiplication is a term by term

multiplication of the two matrices.

correspondence between the boundary directions
will be similar to equation (7):

BD =
j
�!
f r:

�!
f sj

jj�!g rjj:jj
�!g sjj

: (9)

On �gure 4, note that the gradient is only
strong on edges, whereas the GVF is strong ev-
erywhere, thus enabling the local directions to be
seen.

Figure 4. Computing the direction of the bound-
aries: gradient (top), GVF (bottom).

Hence, we can rede�ne DCf in equation (6)
by (DC:BD)f , so that we obtain a new measure
which takes into account the local direction of the
found boundaries.

3.2.2. False detection boundary measure

The boundary false detection measure is based
on the same principle than the well-detected
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boundary measure, but the Gaussian-kind distri-
bution of weights must be inversed. Hence we can
de�ned a false detection criterion by:

FDCf = 1�DCf=We; (10)

where the pixels f and e are linked by the min-
imal distance dfe. As a consequence, the false
detection boundary measure can be de�ned by
the normalized false detection criterion by:

FD = 1� exp

�
�

P
f
(FDCf�nef )

maxf (FDCf�nef )�
P

e
We

�
:(11)

In order to take into account the local direc-
tion of the found boundaries as found with the
GVF, we can rede�ne DCf in equation (6) by
(FDC:(1�BD))f , so we obtain another new false
detection criterion.
Here we have described the use of measures FD

and WDC for one image classi�ed by the algo-
rithm and another image provided by only one
expert. In order to evaluate image segmentation
algorithms on many images we can use a weighted
sum of these both measures, taking into account
the image sizes, which can be di�erent for all con-
sidered images.
In conclusion of this section, we have described

two new measures FD and WDC taking into ac-
count the uncertainty of di�erent experts on the
seen boundaries. We have to consider these two
measures together.

4. ILLUSTRATION

We present here an illustration of our image
classi�cation and segmentation evaluation on real
sonar images. Indeed, underwater environment
is a very uncertain environment and it is par-
ticularly important to classify seabed for numer-
ous applications such as Autonomous Underwater
Vehicle navigation. In recent sonar works (e.g.
[26,27]), the classi�cation evaluation is made only
by visual comparison of one original image and
the classi�ed image. That is not satisfying in
order to correctly evaluate image classi�cation
and segmentation. First we present our database
given by two di�erent experts with di�erent cer-
tainties. Then, one possible classi�cation ap-
proach for sonar image is presented. Finally

the automatic classi�cation and segmentation ob-
tained by this approach is evaluated with our new
evaluation method.
Note that this illustration is presented in order

to show how our measures work on only one clas-
si�er. In order to evaluate a classi�er, we have to
compare the results with another classi�er or with
other parametrization of the evaluated classi�er.

4.1. Database

Our database contains 42 sonar images pro-
vided by the GESMA (Groupe d'Etudes Sous-
Marines de l'Atlantique). Theses images were ob-
tained with a Klein 5400 lateral sonar with a res-
olution of 20 to 30 cm in azimuth and 3 cm in
range. The sea-bottom depth was between 15 m
and 40 m.
The experts have manually segmented these

images giving the kind of feature visible in a
given part of the image: sediment (rock, cob-
ble, sand, silt, ripple (horizontal, vertical or at
45 degrees)), shadow or other features (typically
ships). All sediments are given with three cer-
tainty levels (sure, moderately sure or not sure),
and the boundary between two sediments is also
given with a certainty (sure, moderately sure or
not sure). Hence, every pixel of every image is
labeled as being either a certain type of sediment
or a shadow, or a boundary with one of the three
certainty levels. Figure 1 gives an example of such
a segmentation provided by an expert.

4.2. Classi�cation approach

The classi�cation approach is based on super-
vised classi�cation. In order to learn the classi�er
we have randomly divided the database into two
parts. On the learning database we have consid-
ered, on randomly chosen images only the homo-
geneous tiles with a 32 � 32 size and with a sure
or moderately sure certitude level until to get ap-
proximately the same number of tiles in the learn-
ing and test databases. On the test database we
have considered tiles with a 32 � 32 size and a re-
covering step of 4. On each tile we have extracted
some features by a wavelet decomposition.
The discrete translation invariant wavelet

transform is based on the choice of the optimal
translation for each decomposition level. Each
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decomposition level d gives four new images. We
choose here a decomposition level d = 2. For each
image Iid (the ith image of the decomposition d)
we calculate three features. The energy is given
by:

1

NM

NX
n=1

MX
m=1

Iid(n;m); (12)

where N and M are respectively the number of
pixels on the rows, and on the columns. The en-
tropy is estimated by:

�
1

NM

NX
n=1

MX
m=1

Iid(n;m) ln(Iid(n;m)); (13)

and the mean is given by:

1

NM

NX
n=1

MX
m=1

jIid(n;m)j: (14)

Consequently we obtain 15 features (3+4*3).
The chosen classi�er is based on a Support

Vector Machine. The algorithm used here is de-
scribed in [28]. It is a one-vs-one multi-class ap-
proach. And we take a linear kernel with a con-
stant C = 1.
We have considered only three classes for learn-

ing and test:

- class 1: Rock and Cobble

- class 2: Ripple in all directions

- class 3: Sand and Silt

Hence shadow is not considered and so the clas-
si�cation can not be good on tiles with shadow.
In order to take into account unknown classes,
one solution is to add a rejected class in the clas-
si�er. Consequently, this class is considered as
other class in our evaluation measures. However,
as we show farther down, we can also take into
account this class if the classi�er has no rejected
class.
The units of the classi�er are tiles with a 32 �

32 size with a recovering step of 4. Hence, we can
classify tiles with a 4 � 4 size, considering the tile
of 4 � 4 size in the middle on each tile of 32 �
32.

4.3. Evaluation

Figure 5 shows the result of the classi�cation of
the same image than the one given in the �gure
1. Sand (in red) and rock (in blue) are quite
well classi�ed but ripple (in yellow) is not well
segmented. The dark blue corresponds to that
part of the image that was not considered for the
classi�cation.

Figure 5. Automatic segmented image.

Just looking this �gure 5 we cannot say
whether the classi�cation is good or not, any de-
cision stays very subjective. Moreover the clas-
si�cation algorithm could be good for this image
and not for others. So we propose to use our mea-
sures. The used weights here for the certitude are
respectively 2/3 for sure, 1/2 for moderately sure
and 1/3 for not sure. But other weights can be
preferred according to the application.
The normalized confusion matrix obtained for

one randomly partition of the database is given
by:0
BB@

40:51 5:77 53:72
19:65 18:79 61:56
3:51 1:15 95:34
45:96 12:47 41:57

1
CCA (15)

The last line means that there is shadow or other
parts classi�ed in class 1, 2 or 3. We can note that
a high proportion of the rock or cobble (class 1) is
classi�ed as sand or silt (class 3), and most of the
ripple (class 2) also. Sand and silt, the most com-
mon kinds of sediments on our images, are very
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well classi�ed. The vector of good classi�cation
rate given by [40.51 18.79 95.34 0] and the vector
of error classi�cation rate given by [41.26 43.84
28.47 50.00] summarize these results. Whereas
we have good classi�cation for sand and silt, we
also note a lot of errors because other sediments
are classi�ed in sand or silt.
These results are not signi�cant enough in or-

der to well evaluate the obtained segmentation.
Our proposed measures, given respectively by
the equations (6) and (11) expressed in percent-
age, are 65.17 for the well-detection criterion and
61.35 for the false alarm criterion, if we consider
the direction based on the GVF the proposed
measures give 63.11 for well-detection criterion
and 64.84 for the false alarm criterion.
To better illustrate these two last measures,

we have proceeded to four more randomly par-
titions. We obtain a mean of 63.53 for the well-
detection criterion with 3.37 for the standard de-
viation and a mean of 60.53 for the false alarm
criterion with 7.72 for the standard deviation. If
we consider the direction based on the GVF, we
obtain a mean of 60.09 for the well-detection cri-
terion with 3.13 for the standard deviation and a
mean of 52.62 for the false alarm criterion with
8.04 for the standard deviation. The standard de-
viations show that the well-detection criterion is
more stable than the false alarm criterion. Our
two measures can well evaluate the well-detection
and the false alarm. When we consider the di-
rection based on the GVF, the criteria decrease
because of the weights given by the directions.
Here, the deducted segmentation is dependent of
the size of the tile, in this case it could be better
not to consider the direction based on the GVF.
In order to evaluate the classi�er approach, all

these measures have to be compared to the same
measures calculated for other parameterizations
or for other classi�er algorithms.

5. CONCLUSION

We have proposed some new evaluation mea-
sures for image classi�cation and segmentation in
uncertain environments. These new evaluation
measures can take into account the uncertain la-
bels. The proposed classi�cation evaluation can

be used for every kind of uncertain elements clas-
si�cation and our segmentation evaluation can be
used for all image segmentation approaches. We
have shown that a global image classi�cation eval-
uation must be made by the evaluation of the
classi�cation and, at the same time, by the eval-
uation of the produced segmentation. The pro-
posed confusion matrix takes into account the
uncertainty of the expert and also the inhomo-
geneous units (e.g. patch-worked tiles in the case
of image classi�cation). Moreover we have de-
�ned good classi�cation and error classi�cation
rates from our confusion matrix. The proposed
segmentation evaluation considers good and false
detection boundary measures where the subjec-
tivity of the expert is considered by the given un-
certainty on the boundaries.
The information fusion provided by various

experts in our proposed evaluation approach is
made after individual evaluation, which means
that we fuse our di�erent measures calculated for
each expert. This fusion is made by using a simple
sum: the uncertainty is considered directly in our
measures. We can imagine fusing the information
provided by experts before the evaluation in or-
der to obtain uncertain and/or imprecise reality
(e.g. de�ning fuzzy zones around the boundaries
according to the certainty given by the experts).
The fusion can be made also by belief functions
de�ned from the uncertainties. In this case we
have to rede�ne our proposed measures. For in-
stance, the reality obtained by the fusion of ex-
perts could be used to outperform the learning
step of the classi�cation.
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