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Abstract

In this chapter, we present two applications in information fusion in
order to evaluate the generalized proportional con
ict redistribution rule
presented in the chapter [5]. Most of the time the combination rules are
evaluated only on simple examples. We study here di�erent combination
rules and compare them in terms of decision on real data. Indeed, in real
applications, we need a reliable decision and it is the �nal results that
matter. Two applications are presented here: a fusion of human experts
opinions on the kind of underwater sediments depict on sonar image and
a classi�er fusion for radar targets recognition.

Keywords: Experts fusion, classi�cation, DST, DSmT, generalized
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1 Introduction

We have presented and discussed on some combination rules in the chapter [5].
Our study was essentially on the redistribution of con
ict rules. We have pro-
posed a new proportional con
ict redistribution rule. We have seen that the
decision can be di�erent following the rule. Most of the time the combination
rules are evaluated only on simple examples. In this chapter, we study di�erent
combination rules and compare them in terms of decision on real data. In-
deed, in real applications, we need a reliable decision and it is the �nal results
that matter. Hence, for a given application, the best combination rule is the
rule given the best results. For the decision step, di�erent functions such as
credibility, plausibility and pignistic probability [9, 13, 2] are usually used.

In this chapter, we present the advantages of the DSmT for the modelization
of real applications and also for the combination step. First, the principles of the
DST and DSmT are recalled. We present the formalization of the belief function
models, di�erent rules of combination and decision. One the combination rule
(PCR5) proposed by [12] for two experts is mathematically one of the best for
the proportional redistribution of the con
ict applicable in the context of the
DST and the DSmT. We compare here an extension of this rule for more experts,
the PCR6 rule presented in the chapter [5].

Two applications are presented here: a fusion of human experts opinions on
the kind of underwater sediments depict on sonar image and a classi�er fusion
for radar targets recognition.

1



The �rst application relates the seabed characterization, for instance in order
to help the navigation of Autonomous Underwater Vehicles or provide data to
sedimentologists. The sonar images are obtained with many imperfections due
to instrumentations measuring a huge number of physical data (geometry of the
device, coordinates of the ship, movements of the sonar, etc.). In this kind of
applications, the reality is unknown. If human experts have to classify sonar
images they can not provide with certainty the kind of sediment on the image.
Thus, for instance, in order to train an automatic classi�cation algorithm, we
must take into account this di�erence and the uncertainty of each expert. We
propose in this chapter how to solve this human expert fusion.

The second application allows to really compare the combination rules. We
present an application of classi�er fusion in order to extract the information for
the automatic target recognition. The real data are provided by measures in the
anechoic chamber of ENSIETA (Brest, France) obtained illuminating 10 scale
reduced (1:48) targets of planes. Hence, all the experimentations are controlled
and the reality is known. The results of the fusion of three classi�ers are studied
in terms of good-classi�cation rates.

This chapter is organized as follow: In the �rst section, we recall combination
rules presented in the chapter [5] and we compare in this chapter. The section
3 proposes a mean to fuse human expert's opinions in uncertain environments
such as the underwater milieu. This environment is described with sonar images
the most appropriate in such environment. The last section presents the results
of classi�ers fusion in an application of radar targets recognition.

2 Backgrounds on combination rules

We recall here the combination rules presented and discussed in the chapter
[5] and compared on two real applications in the forwards sections. For more
details on the theory bases see the chapter [5].

In the context of the DST, the non-normalized conjunctive rule is one of the
most used rule and is given by [13] for all X 2 2� by:

mc(X) =
X

Y1\:::\YM=X

MY
j=1

mj(Yj); (1)

where Yj 2 2� is the response of the expert j, and mj(Yj) the associated basic
belief assignments.

In this chapter, we focus on rules where the con
ict is redistributed. With the
rule given in the Dubois and Prade rule [3], a mixed conjunctive and disjunctive
rule, the con
ict is redistributed on partial ignorance. This rule is given for all
X 2 2�, X 6= ; by:

mDP(X) =
X

Y1\:::\YM=X

MY
j=1

mj(Yj) +
X

Y1[:::[YM=X

Y1\:::\YM=;

MY
j=1

mj(Yj); (2)

where Yj 2 2� is the response of the expert j, and mj(Yj) the associated basic
belief assignments.

2



In the context of the DSmT, the non-normalized conjunctive rule can be
used for all X 2 D� and Y 2 D�. The mixed rule given by the equation (2)
has been rewrite in [10], and recalled DSmH, for all X 2 D�, X 6� ; 1 by:

mH(X) =
X

Y1\:::\YM=X

MY
j=1

mj(Yj) +
X

Y1[:::[YM=X

Y1\:::\YM�;

MY
j=1

mj(Yj)+

X
fu(Y1)[:::[u(YM )=Xg

Y1;:::;YM�;

MY
j=1

mj(Yj) +
X

fu(Y1)[:::[u(YM )�;andX=�g
Y1;:::;YM�;

MY
j=1

mj(Yj);

(3)

where Yj 2 D� is the response of the expert j, mj(Yj) the associated basic
belief assignments, and u(Y ) is the function giving the union that compose Y
[11]. For example if Y = (A \B) [ (A \ C), u(Y ) = A [B [ C.

If we want to take the decision only on the elements in �, some rules propose
to redistribute the con
ict proportionally on these elements. The most accom-
plished is the PCR5 given in [12]. The equation for M experts, for X 2 D�,
X 6� ; is given in [1] by:

mPCR5(X) = mc(X) +

MX
i=1

mi(X)
X

(Y�i(1);:::;Y�i(M�1))2(D�)M�1

M�1
\
k=1

Y�i(k)\X�;

 
M�1Y
j=1

m�i(j)(Y�i(j))1lj>i

! Y
Y�i(j)=X

m�i(j)(Y�i(j))

X
Z2fX;Y�i(1);:::;Y�i(M�1)g

Y
Y�i(j)=Z

�
m�i(j)(Y�i(j)):T (X=Z;mi(X))

� ; (4)

where �i counts from 1 to M avoiding i:�
�i(j) = j if j < i;
�i(j) = j + 1 if j � i;

(5)

and: �
T (B; x) = x if B is true;
T (B; x) = 1 if B is false;

(6)

We have proposed another proportional con
ict redistribution PCR6 rule in
the chapter [5], for M experts, for X 2 D�, X 6= ;:

mPCR6(X) = mc(X) + (7)

MX
i=1

mi(X)2
X

M�1
\
k=1

Y�i(k)\X�;

(Y�i(1);:::;Y�i(M�1))2(D�)M�1

0
BBBBB@

M�1Y
j=1

m�i(j)(Y�i(j))

mi(X)+

M�1X
j=1

m�i(j)(Y�i(j))

1
CCCCCA;

1The notation X 6� ; means that X 6= ; and following the chosen model in D�, X is not

one of the element of D� de�ned as ;. For example, if � = fA;B;Cg, we can de�ne a model

for which the expert can provide a mass on A \ B and not on A \ C, so A \ B 6= ; and

A \B = ;
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where � is de�ned like in (5).

mi(X) +

M�1X
j=1

m�i(j)(Y�i(j)) 6= 0, mc is the conjunctive consensus rule given

by the equation (1). The PCR6 and PCR5 rules are exactly the same for in the
case of 2 experts.

We have also proposed two more generalized rules given by:

mPCRf(X) = mc(X) + (8)

MX
i=1

mi(X)f(mi(X))
X

M�1
\
k=1

Y�i(k)\X�;

(Y�i(1);:::;Y�i(M�1))2(D�)M�1

0
BBBBB@

M�1Y
j=1

m�i(j)(Y�i(j))

f(mi(X))+

M�1X
j=1

f(m�i(j)(Y�i(j)))

1
CCCCCA;

with the same notations that in the equation (7), and f an increasing function
de�ned by the mapping of [0; 1] onto IR+.

The second generalized rule is given by:

mPCRg(X) = mc(X) +

MX
i=1

X
M�1
\
k=1

Y�i(k)\X�;

(Y�i(1);:::;Y�i(M�1))2(D�)M�1

mi(X)

 
M�1Y
j=1

m�i(j)(Y�i(j))

! Y
Y�i(j)=X

1lj>i

!
g

 
mi(X)+

X
Y�i(j)=X

m�i(j)(Y�i(j))

!

X
Z2fX;Y�i(1);:::;Y�i(M�1)g

g

0
@ X
Y�i(j)=Z

m�i(j)(Y�i(j)) +mi(X)1lX=Z

1
A
;

(9)

with the same notations that in the equation (7), and g an increasing function
de�ned by the mapping of [0; 1] onto IR+.

In this chapter, we choose f(x) = g(x) = x�, with � 2 IR+.

3 Experts fusion in Sonar imagery

Seabed characterization serves many useful purposes, e.g. help the navigation
of Autonomous Underwater Vehicles or provide data to sedimentologists. In
such sonar applications, seabed images are obtained with many imperfections
[4]. Indeed, in order to build images, a huge number of physical data (geometry
of the device, coordinates of the ship, movements of the sonar, etc.) has to be
taken into account, but these data are polluted with a large amount of noises
caused by instrumentations. In addition, there are some interferences due to
the signal traveling on multiple paths (re
ection on the bottom or surface), due
to speckle, and due to fauna and 
ora. Therefore, sonar images have a lot of
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imperfections such as imprecision and uncertainty; thus sediment classi�cation
on sonar images is a di�cult problem. In this kind of applications, the reality
is unknown and di�erent experts can propose di�erent classi�cations of the
image. Figure 1 exhibits the di�erences between the interpretation and the
certainty of two sonar experts trying to di�erentiate the type of sediment (rock,
cobbles, sand, ripple, silt) or shadow when the information is invisible. Each
color corresponds to a kind of sediment and the associated certainty of the
expert for this sediment expressed in term of sure, moderately sure and not
sure. Thus, in order to train an automatic classi�cation algorithm, we must
take into account this di�erence and the uncertainty of each expert. Indeed,
image classi�cation is generally done on a local part of the image (pixel, or
most of the time on small tiles of e.g. 16�16 or 32�32 pixels). For example,
how a tile of rock labeled as not sure must be taken into account in the learning
step of the classi�er and how to take into account this tile if another expert says
that it is sand? Another problem is: how should we consider a tile with more
than one sediment?

Figure 1: Segmentation given by two experts.

In this case, the space of discernment � represents the di�erent kind of
sediments on sonar images, such as rock, sand, silt, cobble, ripple or shadow
(that means no sediment information). The experts give their perception and
belief according to their certainty. For instance, the expert can be moderately
sure of his choice when he labels one part of the image as belonging to a certain
class, and be totally doubtful on another part of the image. Moreover, on a
considered tile, more than one sediment can be present.

Consequently we have to take into account all these aspects of the applica-
tions. In order to simplify, we consider only two classes in the following: the
rock referred as A, and the sand, referred as B. The proposed models can be
easily extended, but their study is easier to understand with only two classes.

Hence, on certain tiles, A and B can be present for one or more experts.
The belief functions have to take into account the certainty given by the ex-
perts (referred respectively as cA and cB , two numbers in [0; 1]) as well as the
proportion of the kind of sediment in the tile X (referred as pA and pB , also
two numbers in [0; 1]). We have two interpretations of \the expert believes A":
it can mean that the expert thinks that there is A on X and not B, or it can
mean that the expert thinks that there is A on X and it can also have B but he
does not say anything about it. The �rst interpretation yields that hypotheses
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A and B are exclusive and with the second they are not exclusive. We only
study the �rst case: A and B are exclusive. But on the tile X, the expert can
also provide A and B, in this case the two propositions \the expert believes A"
and \the expert believes A and B" are not exclusive.

3.1 Models

We have proposed �ve models and studied these models for the fusion of two
experts [6]. We present here the three last models for two experts and two
classes. In this case the conjunctive rule (1), the mixed rule (2) and the DSmH
(3) are similar. We give the obtained results on a real database for the fusion
of three experts in sonar.

Model M3 In our application, A, B and C cannot be considered exclusive on
X. In order to propose a model following the DST, we have to study exclusive
classes only. Hence, in our application, we can consider a space of discernment
of three exclusive classes � = fA\Bc; B \Ac; A\Bg = fA0; B0; C 0g, following
the notations given on the �gure 2.

Figure 2: Notation of the intersection of two classes A and B.

Hence, we can propose a new model M3 given by:

if the expert says A:�
m(A0 [ C 0) = cA;
m(A0 [B0 [ C 0) = 1� cA;

if the expert says B:�
m(B0 [ C 0) = cB ;
m(A0 [B0 [ C 0) = 1� cB ;

if the expert says C 0:�
m(C 0) = pA:cA + pB :cB ;
m(A0 [B0 [ C 0) = 1� (pA:cA + pB :cB):

(10)
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Note that A0 [B0 [ C 0 = A [B. On our numerical example we obtain:

A0 [ C 0 B0 [ C 0 C 0 A0 [B0 [ C 0

m1 0:6 0 0 0:4
m2 0 0 0:5 0:5

Hence, the conjunctive rule, the credibility, the plausibility and the pignistic
probability are given by:

element mc bel pl betP
; 0 0 0 �

A0 = A \Bc 0 0 0:5 0:2167
B0 = B \Ac 0 0 0:2 0:0667

A0 [B0 = (A \Bc) [ (B \Ac) 0 0 0:5 0:2833
C 0 = A \B 0:5 0:5 1 0:7167
A0 [ C 0 = A 0:3 0:8 1 0:9333
B0 [ C 0 = B 0 0:5 1 0:7833

A0 [B0 [ C 0 = A [B 0:2 1 1 1

where

mc(C
0) = mc(A \B) = 0:2 + 0:3 = 0:5: (11)

In this example, with this modelM3 the decision will beA with the maximum
of the pignistic probability. But the decision could a priori be taken also on
C 0 = A\B because mc(C

0) is the highest. We have seen that if we want to take
the decision on A\B, we must considered the maximum of the masses because
of inclusion relations of the credibility, plausibility and pignistic probability.

Model M4 In the context of the DSmT, we can write C = A \ B and easily
propose a fourth model M4, without any consideration on the exclusivity of the
classes, given by:

if the expert says A:�
m(A) = cA;
m(A [B) = 1� cA;

if the expert says B:�
m(B) = cB ;
m(A [B) = 1� cB ;

if the expert says A \B:�
m(A \B) = pA:cA + pB :cB ;
m(A [B) = 1� (pA:cA + pB :cB):

(12)

This last modelM4 allows to represent our problem without adding an arti�cial
class C. Thus, the model M4 based on the DSmT gives:

A B A \B A [B
m1 0:6 0 0 0:4
m2 0 0 0:5 0:5
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The obtained mass mc with the conjunctive yields:

mc(A) = 0:30;
mc(B) = 0;
mc(A \B) = m1(A)m2(A \B) +m1(A [B)m2(A \B)

= 0:30 + 0:20 = 0:5;
mc(A [B) = 0:20:

(13)

These results are exactly similar to the model M3. These two models do
not present ambiguity and show that the mass on A\B (rock and sand) is the
highest.

The generalized credibility, the generalized plausibility and the generalized
pignistic probability are given by:

element mc Bel Pl GPT
; 0 0 0 �
A 0:3 0:8 1 0:9333
B 0 0:5 0:7 0:7833

A \B 0:5 0:5 1 0:7167
A [B 0:2 1 1 1

Like the model M3, on this example, the decision will be A with the max-
imum of pignistic probability criteria. But here also the maximum of mc is
reached for A \B = C 0.

If we want to consider only the kind of possible sediments A and B and do
not allow their conjunction, we can use a proportional con
ict redistribution
rule such as the PCR rule:

mPCR(A) = 0:30 + 0:5 = 0:8;
mPCR(B) = 0;
mPCR(A [B) = 0:20:

(14)

The credibility, the plausibility and the pignistic probability are given by:

element mPCR bel pl betP
; 0 0 0 �
A 0:8 0:8 1 0:9
B 0 0 0:2 0:1

A [B 0:2 1 1 1

On this numerical example, the decision will be the same than the conjunctive
rule, here the maximum of pignistic probability is reached for A (rock). In the
next section we see that is not always the case.

Model M5 Another model M5 which can be used in both the DST and the
DSmT is given considering only one belief function according to the proportion
by: 8<

:
m(A) = pA:cA;
m(B) = pB :cB ;
m(A [B) = 1� (pA:cA + pB :cB):

(15)
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If for one expert, the tile contains only A, pA = 1, and m(B) = 0. If for another
expert, the tile contains A and B, we take into account the certainty and pro-
portion of the two sediments but not only on one focal element. Consequently,
we have simply:

A B A [B
m1 0:6 0 0:4
m2 0:3 0:2 0:5

In the DST context, the conjunctive rule, the credibility, the plausibility and
the pignistic probability are given by:

element mc bel pl betP
; 0:12 0 0 �
A 0:6 0:6 0:8 0:7955
B 0:08 0:08 0:28 0:2045

A [B 0:2 0:88 0:88 1

In this case we do not have the plausibility to decide on A \ B, because the
con
ict is on ;.

In the DSmT context, the conjunctive rule, the generalized credibility, the
generalized plausibility and the generalized pignistic probability are given by:

element mc Bel Pl GPT
; 0 0 0 �
A 0:6 0:72 0:92 0:8933
B 0:08 0:2 0:4 0:6333

A \B 0:12 0:12 1 0:5267
A [B 0:2 1 1 1

The decision with the maximum of pignistic probability criteria is still A.
The PCR rule provides:

element mPCR bel pl betP
; 0 0 0 �
A 0:69 0:69 0:89 0:79
B 0:11 0:11 0:31 0:21

A [B 0:2 1 1 1

where

mPCR(A) = 0:60 + 0:09 = 0:69;
mPCR(B) = 0:08 + 0:03 = 0:11:

With this model and example the PCR rule, the decision will be also A, and we
do not have di�erence between the conjunctive rules in the DST and DSmT.

3.2 Experimentation

Database Our database contains 42 sonar images provided by the GESMA
(Groupe d'Etudes Sous-Marines de l'Atlantique). These images were obtained
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with a Klein 5400 lateral sonar with a resolution of 20 to 30 cm in azimuth and
3 cm in range. The sea-bottom depth was between 15 m and 40 m.

Three experts have manually segmented these images giving the kind of
sediment (rock, cobble, sand, silt, ripple (horizontal, vertical or at 45 degrees)),
shadow or other (typically ships) parts on images, helped by the manual segmen-
tation interface presented in �gure 3. All sediments are given with a certainty
level (sure, moderately sure or not sure). Hence, each pixel of every image is
labeled as being either a certain type of sediment or a shadow or other.

Figure 3: Manual Segmentation Interface.

The three experts provide respectively, 30338, 31061, and 31173 homoge-
neous tiles, 8069, 7527, and 7539 tiles with two sediments, 575, 402, and 283
tiles with three sediments, 14, 7, and 2 tiles with four, and 1, 0, and 0 tile for
�ve sediments, and 0 for more.

Results We note A = rock, B = cobble, C = sand, D = silt, E = ripple, F =
shadow andG = other, hence we have seven classes and � = fA;B;C;D;E; F;Gg.
We applied the generalized model M5 on tiles of size 32�32 given by:8>>>>>>>>>><
>>>>>>>>>>:

m(A) = pA1:c1 + pA2:c2 + pA3:c3; for rock,
m(B) = pB1:c1 + pB2:c2 + pB3:c3; for cobble,
m(C) = pC1:c1 + pC2:c2 + pC3:c3; for ripple,
m(D) = pD1:c1 + pD2:c2 + pD3:c3; for sand,
m(E) = pE1:c1 + pE2:c2 + pE3:c3; for silt,
m(F ) = pF1:c1 + pF2:c2 + pF3:c3; for shadow,
m(G) = pG1:c1 + pG2:c2 + pG3:c3; for other,
m(�) = 1� (m(A) +m(B) +m(C) +m(D) +m(E) +m(F ) +m(G));

(16)

where c1, c2 and c3 are the weights associated to the certitude respectively:
\sure", \moderately sure" and \not sure". The chosen weights are here: c1 =
2=3, c2 = 1=2 and c3 = 1=3. Indeed we have to consider the cases when the
same kind of sediment (but with di�erent certainties) is present on the same
tile. The proportion of each sediment in the tile associated to these weights is
noted, for instance for A: pA1, pA2 and pA3.

The total con
ict between the three experts is 0.2244. This con
ict comes
essentially from the di�erence of opinion of the experts and not from the tiles
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with more than one sediment. Indeed, we have a weak auto-con
ict (con
ict
coming from the combination of the same expert three times). The values of
the auto-con
ict for the three experts are: 0.0496, 0.0474, and 0.0414. We
note a di�erence of decision between the three combination rules giving by the
equations (7) for the PCR6, (2) for the mixed rule and (1) for the conjunctive
rule. The proportion of tiles with a di�erent decision is 0.11% between the
mixed rule and the conjunctive rule, 0.66% between the PCR6 and the mixed
rule, and 0.73% between the PCR6 and the conjunctive rule.

These results show that there is a di�erence of decision according to the
combination rules with the same model. However, we can not know what is
the best decision, and so what is the best rule, because on this application no
ground truth is known. We compare these same rules in another application,
where the reality is completely known.

4 Classi�ers fusion in Radar target recognition

Several types of classi�ers have been developed in order to extract the infor-
mation for the automatic target recognition (ATR). We have noted that these
performances are di�erent according to the classi�er and the radar target. We
have proposed di�erent approaches of information fusion in order to outperform
three radar target classi�ers [7]. We present here the results reached by the
fusion of three classi�ers with the conjunctive rule, the DSmH, the PCR5 and
the PCR6.

4.1 Classi�ers

The three classi�ers used here are the same than in [7]. The �rst one is a fuzzy
K-nearest neighbor classi�er, the second one is a multilayer perceptron (MLP)
that is a feed forward fully connected neural network. And the third one is
the SART (Supervised ART) classi�er [8] that uses the principle of prototype
generation like the ART neural network, but unlike this one, the prototypes are
generated in a supervised manner.

4.2 Database

The database is the same than in [7]. The real data were obtained in the
anechoic chamber of ENSIETA (Brest, France) using the experimental setup
shown on �gure 4. We have considered 10 scale reduced (1:48) targets (Mirage,
F14, Rafale, Tornado, Harrier, Apache, DC3, F16, Jaguar and F117).

Each target is illuminated in the acquisition phase with a frequency stepped
signal. The data snapshot contains 32 frequency steps, uniformly distributed
over the band B = [11650; 17850]MHz, which results in a frequency increment of
�f = 200MHz. Consequently, the slant range resolution and ambiguity window
are given by:

�Rs = c=(2B) ' 2:4m; Ws = c=(2�f) = 0:75m: (17)

The complex signature obtained from a backscattered snapshot is coherently
integrated via FFT in order to achieve the slant range pro�le corresponding to
a given aspect of a given target. For each of the 10 targets 150 range pro�les
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Figure 4: Experimental setup.

are thus generated corresponding to 150 angular positions, from -50 degrees to
69.50 degrees, with an angular increment of 0.50 degrees.

The database is randomly divided in a training set (for the three supervised
classi�ers) and test set (for the evaluation). When all the range pro�les are
available, the training set is formed by randomly selecting 2/3 of them, the
others being considered as the test set.

4.3 Model

The numerical outputs of the classi�ers for each target and each classi�er, nor-
malized between 0 and 1, de�ne the masses. In order to keep only the most
credible classes we consider the two highest values of these outputs referred as
oij for the jth classi�er and the target i. Hence, we obtain only three focal
elements (two targets and the ignorance �).

The classi�er does not provide equivalent belief in mean. For example, the
fuzzy K-nearest neighbors classi�er provide easily a belief of 1 for a target,
whereas the two other classi�ers provide always belief not null on the second
target and ignorance. In order to give the same weight to each classi�er, we
weight each belief by an adaptive threshold given by:

fj =
0:8

mean(oij)
:

0:8

mean(bij)
; (18)

where mean(oij) is the mean of the belief of the two targets on all the previous
considered signals for the classi�er j, mean(bij) is the similar mean on bij =
fj :oij . fj is initialized to 1. Hence, we expect the mean of belief on the targets
tends toward 0.8 for each classi�er, and 0.2 on �.

Moreover, if the belief mass on � for a given signal and classi�er is less than
0.001, we keep the maximum of the mass and force the other in order to reach
0.001 on the ignorance and so avoid total con
ict with the conjunctive rule.

4.4 Results

We have conducted the division of the database into training database and test
database, 800 times in order to estimate better the good-classi�cation rates.
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Rule Conj. DP PCRfpx PCRgpx PCR6 PCRg
x2 PCRf

x2 PCR5

Conj. 0 0.68 1.53 1.60 2.02 2.53 2.77 2.83
DP 0.68 0 0.94 1.04 1.47 2.01 2.27 2.37
PCRfpx 1.53 0.94 0 0.23 0.61 1.15 1.49 1.67

PCRgpx 1.60 1.04 0.23 0 0.44 0.99 1.29 1.46

PCR6 2.04 1.47 0.61 0.44 0 0.55 0.88 1.08
PCRgx2 2.53 2.01 1.15 0.99 0.55 0 0.39 0.71
PCRfx2 2.77 2.27 1.49 1.29 0.88 0.39 0 0.51
PCR5 2.83 2.37 1.67 1.46 1.08 0.71 0.51 0

Table 1: Proportion of targets with a di�erent decision (%)

We have obtained a total con
ict of 0.4176. The auto-con
ict, reached by the
combination of the same classi�er three times, is 0.1570 for the fuzzy K-nearest
neighbor, 0.4055 for the SART and 0.3613 for the multilayer perceptron. The
auto-con
ict for the fuzzy K-nearest neighbor is weak because it happens many
times that the mass is only on one class (and ignorance), whereas there are two
classes with a non-null mass for the SART and multilayer perceptron. Hence,
the fuzzy K-nearest neighbor reduce the total con
ict during the combination.
The total con
ict is here higher than in the previous application, but it comes
here from the modelization essentially and not from a di�erence of opinion giving
by the classi�ers.

The proportion of targets with a di�erent decision is giving in percentage, in
the table 1. These percentages are more important for this application than the
previous application on sonar images. Hence the conjunctive rule and the mixed
rule are very similar. In terms of similarity, we can give this order: conjunctive
rule, the mixed rule (DP), PCR6f and PCR6g with a concave mapping, PCR6,
PCR6f and PCR6g with a convex mapping, and PCR5.

The �nal decision is taken with the maximum of the pignistic probabilities.
Hence, the results reached by the generalized PCR are signi�cantly better than
the conjunctive rule and the PCR5, and better than the mixed rule (DP). The
conjunctive rule and the PCR5 give the worth classi�cation rates on these data
(there is no signi�cantly di�erence), whereas they have a high proportion of
targets with a di�erent decision.

The best classi�cation rate (see table 2) is obtained with PCRfpx, but is
not signi�cantly better than the results obtained with the other versions PCRf ,
using a di�erent concave mapping.

5 Conclusion

In this chapter, we have proposed a study of the combination rules compared in
terms of decision. The generalized proportional con
ict redistribution (PCR6)
rule (presented in the chapter [5]) have been evaluated. We have shown on real
data that there is a di�erence of decision following the choice of the combination
rule. This di�erence can be very small in percentage but allows signi�cantly
di�erence in good-classi�cation rates. Moreover, high proportion with a di�erent
decision does not lead to a high di�erence in terms of good-classi�cation rates.
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Rule % con�ance Interval
Conjunctive 89.83 [89.75 : 89.91]
DP 89.99 [89.90 : 90.08]
PCRfx0:3 90.100 [90.001 : 90.200]
PCRfpx 90.114 [90.015 : 90.213]

PCRfx0:7 90.105 [90.006 : 90.204]
PCRgpx 90.08 [89.98 : 90.18]

PCR6 90.05 [89.97 : 90.13]
PCRgx2 90.00 [89.91 : 90.10]
PCRfx2 89.94 [89.83 : 90.04]
PCR5 89.85 [89.75 : 89.85]

Table 2: Good-classi�cation rates (%)

The last application shows that we can achieve better good-classi�cation rates
with the generalized PCR6 than with the conjunctive rule, the DSmH, or PCR5.

The �rst presented application shows that the modelization on D� can re-
solve easily some problems. If the application need a decision step and if we
want to consider the conjunctions of the elements of the discernment space, we
have to take the decision directly on the masses (and not on the credibilities,
plausibilities or pignistic probabilities). Indeed, these functions are increasing
and can not give a decision on the conjunctions of elements. In real applica-
tions, most of the time, there is no ambiguity and we can take the decision,
else we have to propose a new decision function that can reach a decision on
conjunctions and also on singletons.

The conjunctions of elements can be considered (and so D�) in many ap-
plications, especially in image processing, where an expert can provide element
with more than one classes. In estimation applications, where intervals are con-
sidered, encroaching intervals (with no empty intersection) can provide better
modelization.

References

[1] J. Dezert and F. Smarandache. Dsmt: A new paradigm shift for informa-
tion fusion. In COGnitive systems with Interactive Sensors, Paris, France,
March 2006.

[2] J. Dezert, F. Smarandache, and M. Daniel. The Generalized Pignistic
Transformation. In Seventh International Conference on Information Fu-
sion, Stockholm, Sweden, June 2004.

[3] D. Dubois and H. Prade. Representation and combination of uncertainty
with belief functions and possibility measures. Computational Intelligence,
4:244{264, 1988.

[4] A. Martin. Comparative study of information fusion methods for sonar
images classi�cation. In International Conference on Information Fusion,
Philadelphia, USA, June 2005.

14



[5] A. Martin and C. Osswald. Applications and Advances of DSmT for Infor-
mation Fusion, Book 2, chapter A new generalization of the proportional
con
ict redistribution rule stable in terms of decision, pages 223{241. Amer-
ican Research Press Rehoboth, 2006.

[6] A. Martin and C. Osswald. Human experts fusion for image classi�cation.
Information & Security: An International Journal, Special issue on Fusing
Uncertain, Imprecise and Paradoxist Information (DSmT), 2006.

[7] A. Martin and E. Radoi. E�ective ATR Algorithms Using Information
Fusion Models. In International Conference on Information Fusion, Stock-
holm, Sweden, June 2004.

[8] E. Radoi. Contribution �a la reconnaissance des objets 3D �a partir de leur
signature �electromagn�etique. PhD thesis, Universit de Bretagne Occiden-
tale, Brest, France, 1999.

[9] G. Shafer. A mathematical theory of evidence. Princeton University Press,
1976.

[10] F. Smarandache and J. Dezert. Applications and Advances of DSmT for
Information Fusion. American Research Press Rehoboth, 2004.

[11] F. Smarandache and J. Dezert. Applications and Advances of DSmT for
Information Fusion, chapter Combination of beliefs on hybrid DSm models,
pages 61{103. American Research Press Rehoboth, 2004.

[12] F. Smarandache and J. Dezert. Information fusion based on new propor-
tional con
ict redistribution rules. In International Conference on Infor-
mation Fusion, Philadelphia, USA, June 2005.

[13] Ph. Smets. The Combination of Evidence in the Transferable Belief
Model. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(5):447{458, 1990.

15


