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Abstract

In image classi�cation, merging the opinion of several human experts

is very important for di�erent tasks such as the evaluation or the training.

Indeed, the ground truth is rarely known before the scene imaging. We

propose here di�erent models in order to fuse the informations given by

two or more experts. The considered unit for the classi�cation, a small

tile of the image, can contain one or more kind of the considered classes

given by the experts. A second problem that we have to take into account,

is the amount of certainty of the expert has for each pixel of the tile. In

order to solve these problems we de�ne �ve models in the context of the

Dempster-Shafer Theory and in the context of the Dezert-Smarandache

Theory and we study the possible decisions with these models.
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Introduction

Fusing the opinion of several human experts, also known as the experts fusion
problem, is an important question in the image classi�cation �eld and very few
studied. Indeed, the ground truth is rarely known before the scene has been
imaged; consequently, some experts have to provide their perception of the
images in order to train the classi�ers (for supervised classi�ers), and also to
evaluate the image classi�cation. In most of the real applications, the experts
cannot provide the di�erent classes on the images with certitude. Moreover,
the di�erence of experts perceptions can be very large, and so many parts of
the images have con�icting information. Thereby, only one expert reality is not
reliable enough, and experts fusion is required.

Image classi�cation is generally done on a local part of the image (pixel, or
most of the time on small tiles of e.g. 16�16 or 32�32 pixels). Classi�cation
methods can usually be described into three steps. First, signi�cant features
are extracted from these tiles. Generally, a second step in necessary in order to
reduce these features, because they are too numerous. In the third step, these
features are given to classi�cation algorithms. The particularity in considering
small tiles in image classi�cation is that sometimes, more than one class can
co-exist on a tile.

An example of such an image classi�cation process is seabed characteriza-
tion. This serves many useful purposes, e.g help the navigation of Autonomous
Underwater Vehicles or provide data to sedimentologists. In such sonar applica-
tions, which serve as examples throughout the paper, seabed images are obtained
with many imperfections [1]. Indeed, in order to build images, a huge number



of physical data (geometry of the device, coordinates of the ship, movements of
the sonar, etc.) are taken into account, but these data are polluted with a large
amount of noises caused by instrumentations. In addition, there are some inter-
ferences due to the signal traveling on multiple paths (re�ection on the bottom
or surface), due to speckle, and due to fauna and �ora. Therefore, sonar images
have a lot of imperfections such as imprecision and uncertainty; thus sediment
classi�cation on sonar images is a di�cult problem. In this kind of applications,
the reality is unknown and di�erent experts can propose di�erent classi�cations
of the image. Figure 1 exhibits the di�erences between the interpretation and
the certainty of two sonar experts trying to di�erentiate the type of sediment
(rock, cobbles, sand, ripple, silt) or shadow when the information is invisible.
Each color corresponds to a kind of sediment and the associated certainty of the
expert for this sediment expressed in term of sure, moderately sure and not sure.
Thus, in order to learn an automatic classi�cation algorithm, we must take into
account this di�erence and the uncertainty of each expert. For example, how a
tile of rock labeled as not sure must be taken into account in the learning step
of the classi�er and how to take into account this tile if another expert says that
it is sand? Another problem is: how to take into account the tiles with more
than one sediment?

Figure 1: Segmentation given by two experts.

Many fusion theories can be used for the experts fusion in image classi�cation
such as voting rules [2, 3], possibility theory [4, 5], belief function theory [6, 7].
In our case, experts can express their certitude on their perception. As a result,
probabilities theories such as the Bayesian theory or the belief function theory
are more adapted. Indeed, the possibility theory is more adapted to imitate the
imprecise data whereas probability-based theories is more adapted to imitate
the uncertain data. Of course both possibility and probability-based theories
can imitate imprecise and uncertain data at the same time, but not so easily.
That is why, our choice is conducted on the belief function theory, also called
the Dempster-Shafer theory (DST) [6, 7]. We can divide the fusion approach
into four steps: the belief function model, the parameters estimation depending
on the model (not always necessary), the combination, and the decision. The
most di�cult step is presumably the �rst one: the belief function model from
which the other steps follow.

Moreover, in real applications of image classi�cation, experts con�ict can
be very large, and we have to take into account the heterogeneity of the tiles



(more than one class can be present on the tile). Consequently, the Dezert-
Smarandache Theory (DSmT) [8], an extension of the belief function theory,
can �t better to our problem of image classi�cation if there is con�ict. Indeed,
considering the space of discernment � = fC1; C2; : : : ; Cng, where Ci is the
hypothesis �the considered unit belongs to the class i�. In the classical belief
function theory, the belief functions, also called the basic belief assignments,
are de�ned by a mapping of the power set 2� onto [0; 1]. The power set 2�

is closed under the [ operator, and ; 2 2�. In the extension proposed in the
DSmT, generalized basic belief assignments are de�ned by a mapping of the
hyper-power set D� onto [0; 1], where the hyper-power set D� is closed under
both [ and \ operators. Consequently, we can manage �nely the con�ict of the
experts and also take into account the tiles with more than one class.

In the �rst section, we discuss and present di�erent belief function models
based on the power set and the hyper power set. These models try to answer
our problem. We study these models also in the steps of combination and
decision of the information fusion. These models allow, in a second section, to
a general discussion on the di�erence between the DSmT and DST in terms
of capacity to represent our problem and in terms of decision. Finally, we
present an illustration of our proposed experts fusion on real sonar images,
which represent a particularly uncertain environment.

Our proposed Models

In this section, we present �ve models taking into account the possible speci-
�cities of the application. First, we recall the principles of the DST and DSmT
we apply here. Then we present a numerical example which illustrates the �ve
proposed models presented afterward. The �rst three models are presented in
the context of the DST, the fourth model in the context of the DSmT, and the
�fth model in both contexts.

Theory Bases

Belief Function Models

The belief functions or basic belief assignments m are de�ned by the mapping of
the power set 2� onto [0; 1], in the DST, and by the mapping of the hyper-power
set D� onto [0; 1], in the DSmT, with :

m(;) = 0; (1)

and X
X22�

m(X) = 1; (2)

in the DST, and X
X2D�

m(X) = 1; (3)

in the DSmT, where X is a given tile of the image.
The equation (1) allows that we assume a closed world [7, 8]. We can de�ne

the belief function with only:
m(;) > 0; (4)



and the world is open [9]. In a closed world, we can add one element in order
to propose an open world.

These simple conditions in equation (1) and (2) or (1) and (3), give a large
panel of de�nitions of the belief functions, which is one of the di�culties of the
theory. The belief functions must therefore be chosen according to the intended
application.

In our case, the space of discernment � represents the di�erent kind of
sediments on sonar images, such as rock, sand, silt, cobble, ripple or shadow
(that means no sediment information). The experts give their perception and
belief according to their certainty. For instance, the expert can be moderately
sure of his choice when he labels one part of the image as belonging to a certain
class, and be totally doubtful on another part of the image. Moreover, on a
considered tile, more than one sediment can be present.

Consequently we have to take into account all these aspects of the applica-
tions. In order to simplify, we consider only two classes in the following: the
rock referred as A, and the sand, referred as B. The proposed models can be
easily extended, but their study is easier to understand with only two classes.

Hence, on certain tiles, A and B can be present for one or more experts. The
belief functions have to take into account the certainty given by the experts (re-
ferred respectively as cA and cB , two numbers in [0; 1]) as well as the proportion
of the kind of sediment in the tile X (referred as pA and pB , also two numbers
in [0; 1]). We have two interpretations of �the expert believes A�: it can mean
that the expert thinks that there is A on X and not B, or it can mean that the
expert thinks that there is A on X and it can also have B but he does not say
anything about it. The �rst interpretation yields that hypotheses A and B are
exclusive and with the second they are not exclusive. We only study the �rst
case: A and B are exclusive. But on the tile X, the expert can also provide A
and B, in this case the two propositions �the expert believes A� and �the expert
believes A and B� are not exclusive.

Combination rules

Many combination rules have been proposed these last years in the context of
the belief function theory ([10, 11, 9, 12, 8, 13], etc.). In the context of the DST,
the combination rule most used today seems to be the conjunctive consensus
rule given by [9] for all X 2 2� by:

m(X) =
X

Y1\:::\YM=X

MY
j=1

mj(Yj); (5)

where Yj 2 2� is the response of the expert j, and mj(Yj) the associated belief
function.

In the context of the DSmT, the conjunctive consensus rule can be used for
all X 2 D� and Y 2 D�. If we want to take the decision only on the elements in
�, some rules propose to redistribute the con�ict on these elements. The most
accomplished rule to provide that is the PCR5 given in [13] for two experts and



for X 2 D�, X 6= ; by:

mPCR5(X) = m12(X)+X
Y 2D�;

c(X\Y )=;

�
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )

�
;

(6)

where m12(:) is the conjunctive consensus rule given by the equation (5),
c(X \ Y ) is the conjunctive normal form of X \ Y and the denominators are
not null. We can easily generalize this rule for M experts, for X 2 D�, X 6= ; :

mPCR6(X) = m(X) + (7)

MX
i=1

mi(X)2
X

M�1
\
k=1

Y�i(k)\X�;

(Y�i(1);:::;Y�i(M�1))2(D
�)M�1

0
BBBBB@

M�1Y
j=1

m�i(j)(Y�i(j))

mi(X)+

M�1X
j=1

m�i(j)(Y�i(j))

1
CCCCCA
;

where �i counts from 1 to M avoiding i:�
�i(j) = j if j < i;
�i(j) = j + 1 if j � i;

(8)

mi(X) +

M�1X
j=1

m�i(j)(Y�i(j)) 6= 0, and m is the conjunctive consensus rule given

by the equation (5).
The comparison of all the combination rules is not the purpose of this paper.

Consequently, we use here the equation (5) in the context of the DST and the
equation (7) in the context of the DSmT.

Decision rules

The decision is a di�cult task. No measures are able to provide the best deci-
sion in all the cases. Generally, we consider the maximum of one of the three
functions: credibility, plausibility, and pignistic probability.

In the context of the DST, the credibility function is given for all X 2 2�

by:

bel(X) =
X

Y 22X ;Y 6=;

m(Y ): (9)

The plausibility function is given for all X 2 2� by:

pl(X) =
X

Y 22�;Y \X 6=;

m(Y ) = bel(�)� bel(Xc); (10)

where Xc is the complementary of X. The pignistic probability, introduced by
[14], is here given for all X 2 2�, with X 6= ; by:

betP(X) =
X

Y 22�;Y 6=;

jX \ Y j

jY j

m(Y )

1�m(;)
: (11)



Generally the maximum of these functions is taken on the elements in �, but
we will give the values on all the focal elements.

In the context of the DSmT the corresponding generalized functions have
been proposed [15, 8]. The generalized credibility Bel is de�ned by:

Bel(X) =
X

Y 2DX

m(Y ) (12)

The generalized plausibility Pl is de�ned by:

Pl(X) =
X

Y 2D�;X\Y 6=;

m(Y ) (13)

The generalized pignistic probability is given for all X 2 D�, with X 6= ; is
de�ned by:

GPT(X) =
X

Y 2D�;Y 6=;

CM(X \ Y )

CM(Y )
m(Y ); (14)

where CM(X) is the DSm cardinality corresponding to the number of parts of
X in the Venn diagram of the problem [15, 8].

If the credibility function provides a pessimist decision, the plausibility func-
tion is often too optimist. The pignistic probability is often taken as a compro-
mise. We present the three functions for our models.

Numerical and illustrative example

Consider two experts providing their opinion on the tile X. The �rst expert
says that on tile X there is some rock A with a certainty equal to 0.6. Hence
for this �rst expert we have : pA = 1, pB = 0, and cA = 0:6. The second expert
thinks that there are 50% of rock and 50% of sand on the considered tile X
with a respective certainty of 0.6 and 0.4. Hence for the second expert we have:
pA = 0:5, pB = 0:5, cA = 0:6 and cB = 0:4. We illustrate all our proposed
models with this numerical exemple.

Model M1

If we consider the space of discernment given by � = fA;Bg, we can de�ne a
belief function by:

if the expert says A:�
m(A) = cA;
m(A [B) = 1� cA;

if the expert says B:�
m(B) = cB ;
m(A [B) = 1� cB :

(15)

In this case, it is natural to distribute 1�cA and 1�cB on A[B which represent
the ignorance.

This model takes into account the certainty given by the expert but the space
of discernment does not consider the possible heterogeneity of the given tile X.



Consequently, we have to add another focal element meaning that there are two
classes A and B on X. In the context of the Dempster-Shafer theory, we can call
this focal element C and the space of discernment is given by � = fA;B;Cg,
and the power set is given by 2� = f;; A;B;A[B;C;A[C;B [C;A[B [Cg.
Hence we can de�ne our �rst model M1 for our application by:

if the expert says A:�
m(A) = cA;
m(A [B [ C) = 1� cA;

if the expert says B:�
m(B) = cB ;
m(A [B [ C) = 1� cB ;

if the expert says C:�
m(C) = pA:cA + pB :cB ;
m(A [B [ C) = 1� (pA:cA + pB :cB):

(16)

On our numerical example, we obtain:

A B C A [B [ C
m1 0:6 0 0 0:4
m2 0 0 0:5 0:5

Hence for the consensus combination for the model M1, the belief function m12,
the credibility, the plausibility and the pignistic probability are given by:

element m12 bel pl betP
; 0:3 0 0 �
A 0:3 0:3 0:5 0:5238
B 0 0 0:2 0:0952

A [B 0 0:3 0:5 0:6190
C 0:2 0:2 0:4 0:3810

A [ C 0 0:5 0:7 0:9048
B [ C 0 0:2 0:4 0:4762

A [B [ C 0:2 0:7 0:7 1

Where:

m12(;) = m12(A \ C) = 0:30: (17)

This belief function provides an ambiguity because the same mass is put on A,
the rock, and ;, the con�ict. With the maximum of credibility, plausibility or
pignistic probability this ambiguity is suppressed because these functions do not
consider the empty set.

Model M2

In the �rst modelM1, the possible heterogeneity of the tile is taken into account.
However, the ignorance is characterized by A[B[C and not by A[B anymore,
and class C represents the situation when the two classes A and B are on X.



Consequently A [B [ C could be equal to A [B, and we can propose another
model M2 given by:

if the expert says A:�
m(A) = cA;
m(A [B) = 1� cA;

if the expert says B:�
m(B) = cB ;
m(A [B) = 1� cB ;

if the expert says C:�
m(C) = pA:cA + pB :cB ;
m(A [B) = 1� (pA:cA + pB :cB):

(18)

On our numerical example, we have:

A B C A [B
m1 0:6 0 0 0:4
m2 0 0 0:5 0:5

In this modelM2 the ignorance is partial and the conjunctive consensus rule,
the credibility, the plausibility and the pignistic probability are given by:

element m12 bel pl betP
; 0:5 0 0 �
A 0:3 0:3 0:3 0:6
B 0:2 0:2 0:2 0:4

A [B 0 0:5 0:5 1
C 0 0 0 0

A [ C 0 0:3 0:3 0:6
B [ C 0 0:2 0:2 0:4

A [B [ C 0 0:5 0:5 1

where

m12(;) = m12(A \ C) +m12(C \ (A [B)) = 0:30 + 0:2 = 0:5: (19)

The previous ambiguity in M1 between A (the rock) and ; (the con�ict) is
still present with a belief on ; higher than A. Moreover, in this model the mass
on C is null!

These models M1 and M2 are di�erent because in the DST the classes A, B
and C are supposed to be exclusive. Indeed, the fact that the power set 2� is
not closed under \ operator leads to the exclusivity of the classes.

Model M3

In our application, A, B and C cannot be considered exclusive on X. In order
to propose a model following the DST, we have to study exclusive classes only.
Hence, in our application, we can consider a space of discernment of three



Figure 2: Notation of the intersection of two classes A and B.

exclusive classes � = fA \ Bc; B \ Ac; A \ Bg = fA0; B0; C 0g, following the
notations given on the �gure 2.

Hence, we can propose a new model M3 given by:

if the expert says A:�
m(A0 [ C 0) = cA;
m(A0 [B0 [ C 0) = 1� cA;

if the expert says B:�
m(B0 [ C 0) = cB ;
m(A0 [B0 [ C 0) = 1� cB ;

if the expert says C:�
m(C 0) = pA:cA + pB :cB ;
m(A0 [B0 [ C 0) = 1� (pA:cA + pB :cB):

(20)

Note that A0 [B0 [ C 0 = A [B. On our numerical example we obtain:

A0 [ C 0 B0 [ C 0 C 0 A0 [B0 [ C 0

m1 0:6 0 0 0:4
m2 0 0 0:5 0:5

Hence, the conjunctive consensus rule, the credibility, the plausibility and
the pignistic probability are given by:

element m12 bel pl betP
; 0 0 0 �

A0 = A \Bc 0 0 0:5 0:2167
B0 = B \Ac 0 0 0:2 0:0667

A0 [B0 = (A \Bc) [ (B \Ac) 0 0 0:5 0:2833
C 0 = A \B 0:5 0:5 1 0:7167
A0 [ C 0 = A 0:3 0:8 1 0:9333
B0 [ C 0 = B 0 0:5 1 0:7833

A0 [B0 [ C 0 = A [B 0:2 1 1 1

where

m12(C
0) = m12(A \B) = 0:2 + 0:3 = 0:5: (21)



On this example, with this model M3 the decision will be A with the max-
imum of pignistic probability. But the decision could a priori be taken also on
C 0 = A\B because m12(C

0) is the highest. We show however in the discussion
section that it is not possible.

Model M4

In the context of the DSmT, we can write C = A \ B and easily propose a
fourth model M4, without any consideration on the exclusivity of the classes,
given by:

if the expert says A:�
m(A) = cA;
m(A [B) = 1� cA;

if the expert says B:�
m(B) = cB ;
m(A [B) = 1� cB ;

if the expert says A \B:�
m(A \B) = pA:cA + pB :cB ;
m(A [B) = 1� (pA:cA + pB :cB):

(22)

This last model M4 allows to represent our problem without adding an arti�cial
class C. Thus, the model M4 based on the DSmT gives:

A B A \B A [B
m1 0:6 0 0 0:4
m2 0 0 0:5 0:5

The obtained mass m12 with the conjunctive consensus yields:

m12(A) = 0:30;
m12(B) = 0;
m12(A \B) = m1(A)m2(A \B) +m1(A [B)m2(A \B)

= 0:30 + 0:20 = 0:5;
m12(A [B) = 0:20:

(23)

These results are exactly the same for the model M3. These two models do
not present ambiguity and show that the mass on A\B (rock and sand) is the
highest.

The generalized credibility, the generalized plausibility and the generalized
pignistic probability are given by:

element m12 Bel Pl GPT
; 0 0 0 �
A 0:3 0:8 1 0:9333
B 0 0:5 0:7 0:7833

A \B 0:5 0:5 1 0:7167
A [B 0:2 1 1 1



Like the model M3, on this example, the decision will be A with the max-
imum of pignistic probability criteria. But here also the maximum of m12 is
reached for A \B = C 0.

If we want to consider only the kind of possible sediments A and B and not
also the conjunctions, we can use a proportional con�ict redistribution rules such
as the PCR5 proposed in [13]. Consequently we have x = 0:3:(0:5=0:3) = 0:5
and y = 0, and the PCR5 rule provides:

mPCR5(A) = 0:30 + 0:5 = 0:8;
mPCR5(B) = 0;
mPCR5(A [B) = 0:20:

(24)

The credibility, the plausibility and the pignistic probability are given by:

element mPCR5 bel pl betP
; 0 0 0 �
A 0:8 0:8 1 0:9
B 0 0 0:2 0:1

A [B 0:2 1 1 1

On this numerical example, the decision will be the same than the consensus
rule, here the maximum of pignistic probability is reached for A (rock). In the
next section we see that is not always the case.

Model M5

Another model M5 which can be used in both the DST and the DSmT is given
considering only one belief function according to the proportion by:8<

:
m(A) = pA:cA;
m(B) = pB :cB ;
m(A [B) = 1� (pA:cA + pB :cB):

(25)

If for one expert, the tile contains only A, pA = 1, and m(B) = 0. If for another
expert, the tile contains A and B, we take into account the certainty and pro-
portion of the two sediments but not only on one focal element. Consequently,
we have simply:

A B A [B
m1 0:6 0 0:4
m2 0:3 0:2 0:5

In the DST context, the consensus rule, the credibility, the plausibility and
the pignistic probability are given by:

element m12 bel pl betP
; 0:12 0 0 �
A 0:6 0:6 0:8 0:7955
B 0:08 0:08 0:28 0:2045

A [B 0:2 0:88 0:88 1

In this case we do not have the plausibility to decide on A \ B, because the
con�ict is on ;.



In the DSmT context, the consensus rule, the generalized credibility, the
generalized plausibility and the generalized pignistic probability are given by:

element m12 Bel Pl GPT
; 0 0 0 �
A 0:6 0:72 0:92 0:8933
B 0:08 0:2 0:4 0:6333

A \B 0:12 0:12 1 0:5267
A [B 0:2 1 1 1

The decision with the maximum of pignistic probability criteria is still A.
The PCR5 rule provides:

element mPCR5 bel pl betP
; 0 0 0 �
A 0:69 0:69 0:89 0:79
B 0:11 0:11 0:31 0:21

A [B 0:2 1 1 1

where

mPCR5(A) = 0:60 + 0:09 = 0:69;
mPCR5(B) = 0:08 + 0:03 = 0:11:

With this model and example the PCR5 rule, the decision will be also A, and
we do not have di�erence between the consensus rules in the DST and DSmT.

Discussion

We have build, in the previous section, the models M1, M2, M3, M4, and M5

in the DSmT case in order to take into account the decision considering also
A\B (�there is rock and sand on the tile�). In fact only the M1 and M2 models
can do it. Model M2 can do it only if both experts say A \ B. These two
models assume that A, B and A \ B are exclusive. Of course this assumption
is false. For the models M3, M4 and M5, we have to take the decision on the
credibilities, plausibilities or pignistic probabilities, but these three functions for
A \B cannot be higher than A or B (or for C 0 than A0 [ C 0 and B0 [ C 0 with
the notations of the model M3). Indeed for all x 2 A \B, x 2 A and x 2 B, so
for all X � Y :

bel(X) � bel(Y );
pl(X) � pl(Y );
betP(X) � betP(Y );
Bel(X) � Bel(Y );
Pl(X) � Pl(Y );
GPT(X) � GPT(Y ):

Hence, our �rst problem is not solved: we can never choose A \B with the
maximum of credibility, plausibility or pignistic probability. If the two experts
think that the considered tile contains rock and sand (A\B), then the pignistic
probabilities are equal. However the belief on A \ B can be the highest (see



the example on the models M3 and M4). The limits of the decision rules are
reached in this case.

We have seen that we can describe our problem both in the DST and the
DSmT context. The DSmT is more adapted to modelize the belief on A\B for
example with the model M4, but model M3 with the DST can provide exactly
the same belief on A, B and A \ B. Consequently, the only di�erence we can
expect on the decision comes from the combination rules. In the presented
numerical example, the decisions are the same: we choose A.

An example of decision instability

Take another example with this last model M5: The �rst expert provides: pA =
0:5, pB = 0:5, cA = 0:6 and cB = 0:4, and the second expert provides: pA = 0:5,
pB = 0:5, cA = 0:86 and cB = 1. We want take a decision only on A or B.
Hence we have:

A B A [B
m1 0:3 0:2 0:5
m2 0:43 0:5 0:07

For M5 on the DST context:

element m12 bel pl betP
; 0:236 0 0 �
A 0:365 0:365 0:4 0:5007
B 0:364 0:364 0:399 0:4993

A [B 0:035 0:764 0:764 1

M5 with PCR5 gives (with the partial con�icts: x1 = 0:0562, y1 = 0:0937,
x2 = 0:0587 and y2 = 0:0937):

element mPCR5 bel pl betP
; 0 0 0 �
A 0:479948 0:479 0:5149 0:4974
B 0:485052 0:485 0:5202 0:5026

A [B 0:035 1 1 1

This last example shows that we have a di�erence between the DST and the
DSmT, but what is the best solution? With the DST we choose A and with
the DSmT we choose B. We can show that the decision will be the same in the
most of the case (about 99.4%).

Stability of decision process

The space where experts can de�ne their opinions on which n classes are present

in a given tile is a part of [0; 1]n: E = [0; 1]n\(
X
X2�

m(X) � 1). In order to study

the di�erent combination rules, and the situations where they di�er, we use a
Monte Carlo method, considering the weights pA, cA, pB , cB , . . . , as uniform

variables, �ltering them by the condition
X
X2�

pXcX � 1 for one expert.



Thus, we measure the proportion of situations where decision di�ers between
the consensus combination rule, and the PCR5, where con�ict is proportionally
distributed.

We can not choose A\B, as the measure of A\B is always lower (or equal
with probability 0) than the measure of A or B. In the case of two classes, A[B
is the ignorance, and is usually excluded (as it always maximises bel, pl, betP,
Bel, Pl and GPT). We restrict the possible choices to singletons, A, B, etc.
Therefore, it is equivalent to tag the tile by the most credible class (maximal
for bel), the most plausible (maximal for pl), the most probable (maximal for
betP) or the heaviest (maximal for m), as the only focal elements are singletons,
� and ;.

The only situation where the total order induced by the masses m on sin-
gletons can be modi�ed is when the con�ict is distributed on the singletons, as
is the case in the PCR5 method.

Thus, for two classes, the subspace where the decision is �rock� by consensus
rule is very similar to the subspace where the decision is �rock� by the PCR5
rule: only 0.6% of the volume di�er. For a higher number of classes, the decision
obtained by fusing the two experts' opinions is much less stable:

number of classes 2 3 4 5 6 7
decision change 0.6% 5.5% 9.1% 12.1% 14.6% 16.4%

Therefore, the speci�city of PCR5 appears mostly with more than two
classes, and the di�erent combination rules are nearly equivalent when deci-
sion must be taken within two possible classes.

Figure 3: Density of con�ict for (left) uniform random experts and (right) data
with di�erent decision between consensus and PCR5.

Left part of �gure 3 shows the density of con�ict within E , for a number of
classes of 2, 3, 6 and 7. Right part shows how this distribution changes if we
restrict E to the cases where the decision changes between consensus (dotted
lines) and PCR5 (plain lines). Con�ict is more important in this subspace,
mostly because a low con�ict usually means a clear decision: the measure on
the best class is often very di�erent than measure on the second best class.



For the �two experts and two classes� case, it is di�cult to characterize
analytically the stability of the decision process. However, we can easily show
that ifm1(A) = m2(B) or ifm1(A) = m1(B), the �nal decision does not depend
on the chosen combination rule.

Illustration

Database

Our database contains 40 sonar images provided by the GESMA (Groupe
d'Etudes Sous-Marines de l'Atlantique). These images were obtained with a
Klein 5400 lateral sonar with a resolution of 20 to 30 cm in azimuth and 3 cm
in range. The sea-bottom depth was between 15 m and 40 m.

Two experts have manually segmented these images giving the kind of sed-
iment (rock, cobble, sand, silt, ripple (horizontal, vertical or at 45 degrees)),
shadow or other (typically ships) parts on images, helped by the manual seg-
mentation interface presented in �gure 4. All sediments are given with a cer-
tainty level (sure, moderately sure or not sure). Hence, every pixel of every
image is labeled as being either a certain type of sediment or a shadow or other.

Figure 4: Manual Segmentation Interface.

Results

We note A = rock, B = cobble, C = sand, D = silt, E = ripple, F = shadow
and G = other, hence we have seven classes and � = fA;B;C;D;E; F;Gg. We
have applied the generalized model M5 on tiles of size 32�32 given by:8>>>>>>>>>><
>>>>>>>>>>:

m(A) = pA1:c1 + pA2:c2 + pA3:c3; for rock,
m(B) = pB1:c1 + pB2:c2 + pB3:c3; for cobble,
m(C) = pC1:c1 + pC2:c2 + pC3:c3; for ripple,
m(D) = pD1:c1 + pD2:c2 + pD3:c3; for sand,
m(E) = pE1:c1 + pE2:c2 + pE3:c3; for silt,
m(F ) = pF1:c1 + pF2:c2 + pF3:c3; for shadow,
m(G) = pG1:c1 + pG2:c2 + pG3:c3; for other,
m(�) = 1� (m(A) +m(B) +m(C) +m(D) +m(E) +m(F ) +m(G));

(26)



Expert 2
E
x
p
er
t
1

Rock Cobble Ripple Sand Silt Shadow Other
Rock - 12.87 2.72 4.42 3.91 6.41 0.22
Cobble 5.59 - 0.85 18.44 3.85 0.04 0
Ripple 3.12 3.38 - 30.73 150.60 0.27 0.16
Sand 9.50 43.39 42.60 - 524.33 0.51 0.57
Silt 6.42 27.05 36.22 258.98 - 2.60 0.11

Shadow 3.82 0.15 2.13 1.38 0.50 - 0.41
Other 0 0.20 0.10 0.35 0.31 0.14 -

Table 1: Matrix of con�ict (�104) between the two experts.

where c1, c2 and c3 are the weights associated to the certitude respectively:
�sure�, �moderately sure� and �not sure�. The chosen weights are here: c1 = 2=3,
c2 = 1=2 and c3 = 1=3. Indeed we have to consider the cases when the same
kind of sediment (but with di�erent certainties) is present on the same tile.
The proportion of each sediment in the tile associated to these weights is noted,
for instance for A: pA1, pA2 and pA3. The table 1 gives the con�ict matrix of
the two experts. We note that the most of con�ict come from a di�erence of
opinion between sand and silt. For instance, the expert 1 provides many tiles
of sand when the expert 2 thinks that is silt (con�ict induced of 0.0524). This
con�ict is explained by the di�culty for the experts to di�erentiate sand and
silt that di�er with only the intensity. Part of con�ict comes also from the fact
that ripples are hard to distinguish from sand or silt. Ripples, that is, sand or
silt in a special con�guration, is sometimes di�cult to see on the images, and
the ripples are most of the time visible in a global zone where sand or silt is
present. Cobbles also yield con�icts, especially with sand, silt and rock: cobble
is described by some small rocks on sand or silt. The total con�ict between the
two experts is 0.1209. Hence, our application does not present a large con�ict.

We have applied the consensus rule and the PCR5 rule with this model. The
decision is given by the maximum of pignistic probability. In most of the cases
the decisions taken by the two rules are the same. We note a di�erence only on
0.4657% of the tiles. Indeed, we are in the seven classes case with only 0.1209
of con�ict, the simulation given on the �gure 3 show that we have few chance
that the decisions di�er.

Conclusion

In this paper we have proposed �ve di�erent models in order to take into ac-
count two classical problems in uncertain image classi�cation (for training or
evaluation): the heterogeneity of the considered tiles and the certainty of the
experts. These �ve models have been developed in the DST and DSmT con-
texts. The heterogeneity of the tile and the certainty of the expert can be easily
taken into account in the models. However, if we want to have the plausibility
of taking a decision on such a tile (with a conjunction A\B) the usual decision
functions (credibility, plausibility and pignistic probability) are not su�cient:
they cannot allow a such decision. We can take the decision on A \ B only if
we consider the belief function and if the model provides a belief on A \B.



We have also studied the decision according to the con�ict and to the com-
bination rules: conjunctive consensus rule and PCR5 rule. The decision (taken
with the maximum of the credibility, the plausibility or the pignistic probabil-
ity) is the same in most of the cases. For two experts, more classes leads to more
con�ict and to more cases giving a di�erent decision with the di�erent rules.

We have also illustrated one of the proposed models on real sonar images
classi�ed manually by two di�erent experts. In this application the total con�ict
between the two experts is 0.1209 and we note a di�erence of decision only on
0.4657% of the tiles.

We can easily generalize our models for three or more experts and use the
generalized combination of the PCR5 given by the equation (7). Of course the
con�ict will be higher and the di�erence in the decision must be studied.
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