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Abstract – Here, a comparative study of information 
fusion methods for sonar images classification is 
proposed. The automatic classification of sonar images is 
a very difficult problem. Our first task consists in finding 
a good image representation to classify the sea bottom. 
Classical approaches are based on texture analysis. 
Many methods can be considered to deal with this 
problem, however the best choice of the considered 
method depends often on the kind of sediment. Once the 
features extraction method has been considered, many 
classifiers can be used. In order to extract features, four 
major texture analysis methods have been considered. 
The four sets of features are classified and different 
methods of information fusion, such as the weighted vote 
approach, or coming from the possibility theory and 
evidence theory, have been employed. 

Keywords: Weighted vote, possibility theory, evidence 
theory, classification, sonar images. 

1 Introduction 
    Sonar images are obtained from temporal measurements 
made by a lateral, or frontal sonar trailed with the back of 
a boat. Each emitted signal is reflected on the bottom then 
received on the antenna of the sonar with an adjustable 
delayed intensity. In order to build images a huge number 
of physical data (geometry of the device, coordinates of 
the boat, movements of the sonar,...) are taken into 
account, but these data are polluted with a large amount of 
noises due to used instrumentations. In addition, there are 
some interferences due to the signal travelling on multiple 
paths (reflection on the bottom or surface), due to speckle, 
and due to fauna and flora. Therefore, sonar images have a 
lot of imperfections such as imprecision and uncertainty; 
thus sonar classification is a difficult problem.  
    The perfect solution would be the fusion of information 
coming from several sensors. Nevertheless, this solution is 
not acceptable because it needs several boats.  
    The automatic classification approaches are based on 
texture analysis and a classifier such as a neuronal 
network. In the literature, techniques for texture analysis 

can be found and the choice of one or more of them 
depends on the kind of sonar and the applications [1].  
    Therefore in order to enhance the classification, we can 
fuse the data at the level of the texture features or at the 
level of the decisions of the classifiers (given by symbolic 
or numeric data). In this article, we compare different 
fusion techniques such as weighted vote, or methods 
coming from the possibility theory and evidence theory 
which work at the level of the decision making for 
numeric and symbolic data.  
    The paper is organized as follows. First we present the 
sonar images database and the problems inherent to such 
data. Then we briefly describe feature extraction by 
different kinds of texture analysis and the classifier. In the 
section 4, three fusion approaches are presented. Finally, 
some experimental results are discussed. 

2 Sonar Images Database 
    Our database contains 26 sonar images provided by the 
GESMA (Groupe d’Etudes Sous-Marines de l’Atlantique). 
Theses images were obtained with a Klein 5400 lateral 
sonar with a resolution of 20 to 30 cm in azimuth and 3 cm 
in range. The sea-bottom deep was between 15 m and 40 
m. 
    These 26 sonar images have been segmented in small-
images with a size of 64x384 pixels (i.e. of approximately 
1152 cm x 1152 cm). Figure 1 presents one image 
obtained by the sonar. On the left the water column is 
represented, on the right part of image we can not see the 
kind of sediment because of the noise. Figure 2 shows a 
sample of these small-images represented in order to 
obtain a size of 64x64 pixels.  
    Each small-image is manually characterized either by 
the type of sediment (rock, cobbles, sand, ripple, silt), or 
shadow when the information is unknown (see table 1). 
Moreover the existence of more than one kind of sediment 
on the small-image is indicated. In this last case, the major 
type of sediment in the small-image is indicated  
    From table 1, we notice that the sand sediment is the 
most represented one. The cobbles sediments are under-
represented. A major classification difficulty is due to this 
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difference. There are 39.7% of small-images with more 
than one kind of sediment (named patch-worked images).  
    Notice that such a database is quite difficult to realize. 
Indeed, the expert has a subjective experience, and can he 
can make mistakes on some small-images. So we only 
have a subjective perception of reality. 

 

Figure 1. A sample of the sonar images.  
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Figure 2. A sample of small-images with different types of 
sediments.  

Sediment Effective % 
Rock 915 21.35 
Cobbles 33 0.77 
Sand 2321 54.62 
Ripple 374 8.80 
Silt 234 5.50 
Shadow 102 2.40 
Total 4249 100.00 

Table 1. Database elements and their effective.  

3 Sonar images classification 
    Automatic classification of sonar images is generally 
made by automatic characterization of image texture. 
Many methods for texture analysis can be found in the 
literature and the selection of a method is not an easy task. 
This selection depends on the kind of images and on the 
applications. Once the image texture analysis has been 
made, any classifier can classify the extracted parameters. 
In this section, four features extraction methods are 
briefly discussed. The retained classifier is a multilayer 
perceptron classifier. 

3.1 Features extraction 
    The features extraction methods presented here are 
based on four representations of the image: co-occurrence 
matrices, run-lengths matrix, wavelet transform and Gabor 
filters [2]. 
    The co-occurrence matrices are calculated by 
numbering the occurrences of identical grey level of two 
pixels. Four directions are mainly considered: 0°, 45°, 90° 
and 135°. Concerning these four directions, six parameters 
given by Haralick [3] are calculated: homogeneity, 
contrast estimation, entropy estimation, the correlation, the 
directivity, and the uniformity. This classical approach 
yields 24 parameters. The problem for co-occurrence 
matrices is the non-invariance in translation. Typically, 
this problem can appear in a ripple texture 
characterization. 
    The run-lengths matrix is obtained by counting 
consecutive pixels with the same grey level in the four 
previous directions. Hence a matrix ( ( , ))dL i j=dL  is 
obtained, where  is the number of run lengths j of 
the pixels with a grey level i in the direction d. So the 
number of run lengths is given by: 

( , )dL i j

1
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i j
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= =

= ∑∑ i j .                             (1) 

    Then five parameters are extracted for the four 
directional matrices: the proportion of small run-lengths, 
the proportion of big run-lengths, the run dispersion 
between the grey levels, and the run dispersion between 
the lengths. Hence this approach yields 20 parameters. 
This method is well suited in the case of optical images for 



example, where no speckle is present. Anyway, in the case 
of sonar images, we have to remove first the speckle or 
adapt the parameter calculation. However, we keep this 
approach in order to study the effect of a bad extraction of 
texture features.  
    The both previous approaches do not consider the 
translation invariance in the directions. The discrete 
translation invariant wavelet transform is based on the 
choice of the optimal translation for each decomposition 
level. Each decomposition level d gives four new images. 
We choose here a decomposition level d=3. For each 
image i

dI  (the ith image of the decomposition d) we 
calculate three parameters: the energy, the entropy, and 
the mean. So we obtain 63 wavelet features 
(3+4x3+16x3). 
    The last texture analysis is given by the Gabor filter. 
We consider five different frequencies and six directions, 
thus 30 filters are designed. Then we calculate four 
parameters. The first one is the maximum value of the 
matrix numbers normalized by the mean, which represents 
the maximum value of the standard deviation with the 
considered sediment. The mean of all points of the matrix 
is also calculated. The third parameter represents the mean 
on the horizontal direction only (pings direction) 
normalized by the global mean. The last one is the global 
standard deviation before filtering. This approach takes 
into account the translation invariant on the directions. 

3.2 Multilayer perceptron classifier 
    These four feature sets are independently considered as 
the input of a multilayer perceptron (MLP) classifier 
following the fusion architecture given in figure 3 and in 
[4].  
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Figure 3. The multilayer perceptron structure. 

    The learning process of the multilayer perceptron is 
made with a sigmoid function given by:  

1( )
1 exp( )

f x
x

=
+ −

        (2) 

So that each neuron k of the output layer gives a value 
ok∈[0,1]. Figure 4 represents an artificial neuron 
structure.  
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Figure 4. Artificial neuron structure. 

These values ok are considered as numeric outputs of the 
classifiers. The classifier decisions on the class of each 
observation x are taken with the maximum of the ok 
values: 

1
if  ( ) max ( )k k ij m

x C o x o
≤ ≤

∈ = x .       (3) 

Hence we consider four MLP classifiers with 24, 20, 63, 
and 4 unit inputs and 6 unit outputs corresponding to the 6 
considered classes. 

4 Fusion approaches 
    We describe hereafter three theory frames of 
information fusion: weighted vote, possibility theory and 
evidence theory. The description is made following the 
four classical stages of fusion: modelization, estimation, 
combination and decision. Consider m sources Sj with 
j=1,…,m. Each source Sj gives some information on the 
observation x on the hypothesis that x∈Ci, where Ci is one 
of the n conceivable classes. Let us define by Mi

j(x) this 
information. 
    The studied architecture of fusion is presented on figure 
5. We follow the same architecture as the one presented in 
[4]. We will consider the numeric outputs okj (vector in 
[0,1]m) of the classifiers or the classifier decisions Ckj. 
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Figure 5. Architecture of fusion. 

4.1 Weighted Vote 
    The weighted vote is the simplest method of 
information fusion. It is more a combination approach 
particularly well adapted for decisions fusion. Let us 
suppose that the n classes are exclusives. Modelization 
step consists in defining Mi

j(x) by the following function: 



1 if ,
( )
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ij

i
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

        (4) 

This function needs not to be estimated but it cannot take 
into account data imperfection. Reliability of sources can 
be introduced in the combination step [5]: 

1

( ) ( )
m

E
k jk

j

j
kM x Mα

=

=∑ x ,        (5) 

where jkα  is the reliability of the source Sj for the 

decision x∈Ci, such as . Notice that this 

combination is associative and commutative. Adding the 
weights allows for a reduction of the conflict. The 
estimation of these weights 
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jkα  can be made by the 
normalized confusion matrices. We can sum up the 
different decision rules by: 

if  ( ) max ( ) ( ),
( )

1 else,

E E
k i ik M x M x cm b x

E x
n
 = ≥ += 

+
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where c is a constant in [0,1] and b(x) is a function of 
Mk

E(x). E.g.: the function b is given by 
. Thus the decision x∈C', ' '( ) max ( )E

k k k kb x M x≠= k is taken 
if the difference between the number of sources saying 
x∈Ck and the number of sources returning x∈Ck’ is large 
enough, otherwise the decision cannot be taken among the 
n exclusives classes. If the decision rule is too restrictive, 
ambiguous observations increase. 
We assume that c=0.5, b(x)=0 (majority vote case), m odd 
and that the sources are statistically independent and give 
the same probability of successful. In this theoretical case 
[6] demonstrates that weighted vote gives best result in 
term of probability of successful. This result proves that 
under some assumptions, a fusion approach allows better 
classification rates. 

4.2 Possibility theory 
    The possibility theory, proposed by L.A. Zadeh in 70’s 
[7], has been next developed by D. Dubois and H. Prade 
[8]. This theory can take into account both imprecision 
and uncertainty data. These imperfections are modelized 
through a distribution of possibility and two functions 
based on it used for a event characterization: the 
possibility and the necessity. The distribution of 
possibility is defined on the space of discernment 
D={C1,…, Cn} onto [0,1], such that:  

[ ]: 0,1 , sup ( )
x D

Dπ π
∈

→ 1.x =

i

                         (7) 

Hence the first step of fusion is given by: 
( ) ( )j j

i xM x π= C , where j
iM  is seen as a possibility 

degree for the assumption x∈Ci. We should assume that 
the classes are exclusives. The possibility degree 
represents a fuzzy number of the possible values of x and 
is an indication on the imprecision of x. Uncertainty can 
occur when both the event and its contrary are possible. 
The possibility of the contrary event is called: necessity. 
The possibility and necessity function are given for all 
A∈2D (the set of all disjunction of D) by:  

( ) sup ( )
x A

A xπ
∈

∏ = ,                                       (8) 

( ) 1 ( )cN A A= −∏ ,                                      (9) 

where Ac is the contrary event of A. One of the difficulties 
of such theory consists on the estimation of the 
distribution possibility. Many functions can be considered. 
Here, we interpret the output oi of the classifier as a 
possibility degree for the class Ci. 
    Another interest of this theory is the large number of 
combination operators studied and developed. These 
operators can be classified into three classes: conjunctive 
(e.g. t-norm), disjunctive (e.g. t-conorm), and compromise 
operators (e.g. mean, OWA, Sugeno and Choquet 
integrals, …). The choice of one operator is not easy to do 
and depends on the context and application. So we have 
tested several operators: max, min, mean, median, and 
Sugeno integral.  
    The last step of the fusion process is the decision. It is 
made by the following rule:  

k
1

if  ( ) arg max ( )k
i n

ix C x xµ µ
≤ ≤

∈ =              (10) 

where i ( )xµ  is the membership coefficient of x of the 
class Ci given here by the combination of the outputs of 
the classifiers. 

4.3 Evidence theory 
    The evidence theory allows for a representation of both 
imprecision and uncertainty through two functions: 
plausibility and belief [9, 10]. Both functions are derived 
from a mass function defined by mapping of each subset 
of the space of discernment D={C1, …, Cn} onto [0,1], 
such that:  

( ) 1
A D

m A
⊆

=∑                                               (11) 

where m(.) represents the mass function.  
    The first difficulty is the choice of a mass function. We 
can consider two types of approaches: one based on a 
probabilistic model [10] and another one based on 
distance transformation [11]. Appriou in [10] proposes 
two equivalent models based on three axioms. The first 
one that we use in this article is given by: 
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where qj is the jth classifier (supposed cognitively 
independent), j=1,…,m, αij are reliability coefficients on 
each classifier j for each class i=1,…,n (in our application 
we take αij=1), and . Hence a 

mass function is defined for each classifier j and each 
class C

1

,
(max( ( / )))

j
j jq i

R p q C −=

( / )
i. In this approach, the difficulty is the estimation of 

the probabilities j iCp q . In the case of decision level, 
Ci is the class given by the classifier j. Hence the 
estimation of these probabilities can be made easily on a 
learning database using the confusion matrices. In the case 
of characteristic level, the estimation can be made 
classically by the frequencies or making assumption on 
the distribution of theses probabilities. For this level the 
distance approach is easier. 
    Indeed, in [11] the mass functions are defined by: 
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where  is a set of learning vectors,  

is a distance (to be determined) between  and  and 
 is the class of . 

( )( )t

t
x ( ) ( )( ,t td d= x x

x ( )tx
iC ( )tx iϕ  is a distance function, which 

verifies: 
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Many functions can be used, in [11] Denoeux proposes as 
an Euclidian distance: 

2( ) exp( ),i dϕ ν= − id                                    (15) 

where iν  is a positive parameter according to the class . 
We will use this function. The distance calculation 

 can take time if the training database is 
important, but we can consider only the k nearest 
neighbors.  

iC

( ) ( )( ,t= x x)td d

    The fundamental difference between both approaches is 
that in the first case we have to estimate the probabilities 

( / )j ip q C  and in the second case the distance d. For the 
decision stage the estimation of ( / )j ip q C  is very easy, 
but it is quite difficult to choose an appropriate distance in 
this case (symbolic distance). On the contrary, for the 
characteristic level, the estimation of ( / )j iCp q  can be 

difficult if the distribution is unknown, and the Euclidian 
distance, for example, can be chosen for d. In this paper, 
we will apply the probabilistic approach for the decision 
stage (i.e. Ckq outputs of the MLP), and the distance 
approach for the characteristic level (i.e. ok outputs of the 
MLP). 
    The combination of mass functions is based on the 
orthogonal non-normalized Dempster-Shafer’s rule: 

1, 1,

(.) ( (.))
i N j m

i
jm m

= =

= ⊕ ⊕                                  (16) 

    In the case of the distance approach, this combination 
can be rewritten very simply [11]. Other combination rules 
can be used, but we keep this rule as it gives the best result 
on our data. 
    The last stage of the fusion process is the decision. In 
the evidence theory, we can use the maximum of 
plausibility, maximum of belief or maximum of pignistic 
probability [12]. We make a compromise by keeping the 
maximum of pignistic probability in this article. 

5 Experiments 
    Our database has been randomly divided into three 
equal parts. The first one is used for the MLP learning, the 
second one for the fusion learning and the third for tests. 
We repeat this random division 10 times in order to 
achieve a good estimation of the classification rate, and 
we analyze the mean percentage of good classification 
rates defined as the number of good classified small-
images dived by the total of small-images.  
    The classification rates for the four texture analysis 
with MLP are given in table 2. We have also tested a 
global MLP with in input all texture features given by the 
four methods, referred in table 2 as the MLP global. The 
classification rates are given with the confidence interval 
at 95%.  

Classification % Variance 
Co-occurrence 
matrices with MLP

70.0 ± 2.46 6.69 

Run length with 
MLP 

50.3 ± 2.68 1.08 

Wavelet with MLP 68.9 ± 2.48 34.85 
Gabor filter with 
MLP 

66.4 ± 2.53 2.35 

MLP global 50.0 ± 2.68 6.95 

Table 2. Classification performance. 

    On table 2, notice that co-occurrence matrices, wavelet 
transform and Gabor filter give the best results, but there 
are not significantly different. Using the run length 
representation on this kind of images, give very bad 
results. The global multilayer perceptron is not robust to 
the bad feature coming from the run length. We have also 
performed the fusion of the fourth classification 



approaches by a MLP with 24 unit inputs. For the same 
raisons than explained before, we have obtained 49.6 ± 
2.68% with a variance of 0.95. All small-image are 
classified in sand as using the run length representation. 
    In the case of majority vote, we have observed a 
conflict of 18.59% estimated by the number of small-
images for which the decision cannot be determined. 
Hence we choose a weighted vote principle. The weights 

jkα  are estimated on the second part of the database, with 
the confusion matrices. The classification rate with the 
fusion of the four texture analysis by weighted vote gives 
62.0 ± 2.60 %. Notice that results with this approach are 
statistically worse than classification by co-occurrence, 
wavelets or Gabor filter alone. However weighted vote is 
more robust than global MLP.  
   In the context of the possibility theory we have tested 
different operators. The classification rates given in table 
3 show that there is no significant difference between the 
tested operators except for the Sugeno integral, which 
gives worst results. The result of the Sugeno integral is 
conformable to the result given in [4] for another 
application. The best result is reached for the t-norm max 
(with 69.9 ± 2.46 %). The best classification rate for the 
possibility theory is comparable to the best classification 
with co-occurrence only. Possibility theory in this 
application is also more robust to bad features than the 
global MLP. 

Operator % Variance  
t-norm: min 66.1 ± 2.54 29.77 
t-conorm: max 69.9 ± 2.46 4.11 
Mean 67.8 ± 2.51 5.29 
Median 67.5 ± 2.51 4.18 
Sugeno integral 61.8 ± 2.61 2.78 

Table 3. Classification performance for possibility theory.  

 
Sediment % Variance 
Rock 87.3 ± 1.79 5.15 
Sand  84.9 ± 1.92 3.32 
Ripple 61.3 ± 2.61 8.36 
Silt 4.9 ± 1.16 27.58 
Cobbles 0.9 ± 0.51 8.26 
Shadow 71.5 ± 2.42 66.86 
No patch worked 91.3 ± 1.51 1.58 
Patch worked 63.1 ± 2.59 3.18 

Table 4. Detailed classification performance for evidence 
theory with mass function based on distance. 

    For the evidence theory based method we have tested 
two different estimation approaches for mass functions: 
one based on a probability and one based on a distance. 
We have obtained a classification rate of 69.9 ± 2.5 % for 
the mass function based on probability (equation (10)) 
with a variance measurement equal to 3.01 and a 

classification rate of 79.5 ± 2.17 % for the mass function 
based on distance (equation (11)) with a variance 
measurement equal to 2.03. Probability-based approach is 
comparable to the best classification rate with co-
occurrence only. Moreover the distance-based approach 
outperforms all the classifications with only one texture 
analysis method and all other fusion methods. The 
difference between classification rates is statistically 
significant. In the table 4, we present the detailed 
classification performance for the mass function based on 
distance. 
    Note that the best rates are reached for rock and sand 
sediments, which are the most numerous in the database. 
For silt and cobble sediments, the classification rates are 
bad. This can be explained by the fact that the more a 
sediments is represented in the database, the best it will be 
classified by the MLP. Inversely, the classifier based on 
texture analysis do not behave well for sediments less 
represented in the databases. Notice also that 
classification rates are very good for small-images that are 
not patch-worked (91.3 ± 1.51 %). We observe similar 
results for the other fusion methods, but with 
classification rates not so good. 

6 Conclusions 
    We have proposed here a comparative study between 
several information fusion strategies for sonar images 
classification. We have presented fusion methods in three 
different contexts: weighted vote, possibility theory and 
evidence theory. We have seen that weighted vote and 
possibility theory with several operators give classification 
rates comparable to the one based on co-occurrence. 
However these fusion methods are more robust to badly  
extracted features whereas the global MLP is not. The best 
performance is obtained with the evidence theory 
approach based on distance. This method allows a 
significant improvement.  
    Weighted vote is very simple to apply in a context of 
classifier fusion. The learning of the weights by the 
confusion matrices allows a reduction of conflict. The 
advantage of our possibility-based method is the non-
learning phase due to the interpretation of classifier 
outputs as a possibility degree for the class (except for 
Sugeno integral). In general, we can interpret the classifier 
outputs as a possibility degree for the class if outputs are 
in [0,1]. Thus these approaches are very simple to apply. 
Both presented methods using the evidence theory are also 
very simple to apply for classifier fusion. The distance-
based one outperforms other fusion methods but takes 
more processing time (especially for the learning step).  
    The interest of all presented fusion methods for 
classifier fusion is that we do not need any knowledge on 
data. We can integrate these methods for any automatic 
classification process.  
    In order to improve the performance of the sediment 
classification, there are two problems to resolve. An 



important problem for a multilayer perceptron classifier 
comes from the effective difference of the kind of 
sediments in our database. The learning for the type of 
sediment few represented is bad. Another problem is the 
patch-worked small-images. Therefore, we are working 
on the realization of a new repartition of the data with a 
previous manual segmentation of the sediment. 
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