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Abstract: Speech is the easiest mean of 

communication for human. The reason why the vocal 
command along with speech recognitions are more and 
more used in many applications. Especially in 
automotive industries, speech recognition algorithms 
are used in order to help the driver and to reduce his 
tasks. Recently, high order statistics (HOS) have been 
used in many signal processing techniques in order to 
estimate signal characteristics. By using data features 
in real time applications, one can derive new HOS  
estimators. In this paper,  different estimators of high 
order moment and cumulant using different kind of 
signals are proposed and discussed. 
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1. SUMMARY 

Speech is the best, easiest and oldest mean of 
communication for human. Therefore, it seems to be 
very naturally to introduce speech-control systems in 
the next generation of cars, trains, or other 
transportation modes. In automobile industries, speech 
recognition is used in order to help the driver and makes 
easier the transportation. A good speech recognition 
system should contain many speech processing tools, 
such as blind source separation, speech analysis, speech 
recognition and speech/non speech detection [1, 2], see 
Fig. 1. In normal situation, a car driver isn’t the only 
speaking person in that car, that is a major problem for  
speech recognition systems. Acoustic signals of 
different sources (including various noise signals) are 
mixed with each other into the microphones. In such 
case, speech recognition systems are unable to 
recognize correctly the pronounced sentences. That 
main reason to use  source separation algorithms in our 
system [2]. On the other hand, speech analysis is 
important in order to reduce data dimensions correctly 
to outperform the speed processing without decreasing 
the speech recognition performance. In a car 
environment, there are many energetic noises. The 
speech/non-speech detection allows us to only select  
speech signals.  
The different steps of our system needs  a well 
estimation  of speech  features.  

Some specific features of data and problem in 
speech processing field require the study of different 
HOS estimators. Indeed, data can be temporary, 
stationary or not. Data can be considered as non-
stationary within large estimation window and 
stationary within few milliseconds [3]. However, 
background noise is often considered as stationary. In 
speech/non-speech detection or recognition 
applications, the processing should be done in real or 
almost real time. Therefore, quick and efficient 
estimations of the signal statistics among other 
parameters are mostly needed in various speech 
processing such as classification, detection, recognition, 
and sources separation, etc.  
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Figure 1: Speech processing example 

 
In many speech processing applications, researchers 

as well as engineers assume that signal distributions are 
Gaussian or Laplacian in order to simplify the calculus 
[3]. Indeed, this assumption means that a signal 
distribution can be completely characterized  by its 
mean and its standard deviation. However, this strong 
assumption can not be satisfied is various recent 
applications. Since the last two decades, other statistical 
information have been introduced as asymmetric and 
flatness estimators (given for example by the skewness 
and kurtosiss) or more generally High Order Statistics 
[4,5,6,7,8]. Thus many estimators have been proposed 
[3,9,10,11]. All these estimators concern the auto-



cumulant. We mentioned before that in automotive 
environment there are many kind of undesirable signals 
(noise, speech of persons other than the car driver, radio 
music, so on). This reason why a blind source 
separation is needed (see Figure 1). In blind separation 
vocabularies, the car environment can be considered as 
a convolutive mixture model. Many blind separation 
algorithms are based on cross fourth order cumulants. In 
this paper, estimators of the three fourth order cross-
cumulant are proposed. 

2. THEORETICAL BACKGROUND 

Let X denotes a  real  stochastic process stands for a 
speech signal, its characteristic function is given by:  
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We should mention that its module is less or equal to 1, 
and that . Using the previous equation, one can 
define the second characteristic function as: 

(0) 1Xφ =
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By definition, the qth order moment is given [7,8]  from 
the qth order derivative of the first characteristic 
function around zero: 
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By similar definition, the qth order cumulant is given as 
the qth order derivative of the second characteristics 
function at the origin: 
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In the case of Gaussian distribution, we should mention 
that all cumulants with order higher than 2 are null. 

Leonov and Shiryayev gave general relationships 
among moments and cumulants. According to their 
study, a qth order cumulant can be evaluated as:  
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where the numbers {  are such as 
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here that in their original study, they developed the 
relationships in the case of q random variables [8]. 
Equation (5) can be easily obtained from the original 

relationship. Using equation (5), one can write the 
fourth order cumulant as in [9]: 
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Last equation can be simplified for a zero mean signal: 
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The three fourth order cross cumulants for two zero 
mean signals X and Y are given by: 

3,1 3,1 2,0 1,1( , , , ) 3Cum X X X Y = µ − µ µ  
2

2,2 2,2 2,0 0,2 1,1( , , , ) 2Cum X X Y Y = µ − µ µ − µ  

1,3 1,3 0,2 1,1( , , , ) 3Cum X Y Y Y = µ − µ µ  

where ,
n m

n m E X Y µ =   . For non zero mean signals the 
formulas are more complicated. In the case of a speech 
recognition, we can assume that the signal is a zero 
mean signal.  

3. HIGH ORDER STATISTICS 
ESTIMATORS 

Let us consider N realizations xi of a stochastic 
process X assumed to be an ergodic one. In this case, the 
arithmetic estimator of the qth order moment is given 
by:  
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This estimator means that the signal X is stationary over 
N samples. This estimator is a non biased and consistent 
estimator. Hence an arithmetic estimator of the fourth 
order cumulant for a zero mean signal can be developed 
form equation (7): 
 

2
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Unfortunately, this estimator is biased, and we have 

proposed different non-biased estimator in [12]. One of 
these is given by:  
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Concerning the fourth order cross cumulants, when the 
two signals X and Y are independent and they are two 
independent and identically distributed (i.i.d.) signals, 
then the formula (10) can be used. In general case, a 
non-biased estimator of  is given by: 2,2 ( , )Cum X Y
 

2,2 2,2 2,0 0,2 1,1( , ) 2Cum X Y a b cµ µ µ µ= − − , (11) 
 



where: 
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For a real time application the three estimators (10), 
(13), and (14) should be adaptive. Hence the three 
fourth order cross cumulant can be estimated by for 
every k>1 frame: 
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For all previous estimators the signals X and Y are 
supposed stationary because of the  estimator. The 
different high order moments can be estimated by the 
following non-biased and consistent estimator: 
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where λ  is a forgotten factor such as 0 1 . < λ <
 

To outperform the high order statistic estimation of 
strong non-stationary signals, we propose a new 
estimator for the three fourth order cross cumulant, in 
order This new estimator for the first cross cumulant is 
given by: 
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4. COMPARATIVE STUDY 

In order to compare the different estimators (13), (15) 
with the moment estimators given by (18), and (19) of 
the fourth order cross cumulant Cu , some 
experimental results are presented hereinafter. We have 
generated a signal S(n) on 20000 realizations of non-
stationary signal that contains four parts: 

3,1m

• Uniform zero-mean signal between –1 and 1 
(on 8000 realizations) 

• Gaussian zero mean signal with a standard 
deviation of 1 (on 5000 realizations) 

• Uniform zero mean signal between –2 and 2 
(on 3000 realizations) 

• Gaussian zero mean signal with 2σ =  (on 
4000 realizations). 

Let us consider two signals X(n)=S(n) and Y(n)=S3(n), 
in this case we can generate two signals X(n) and Y(n) 
such that xi and yi are independent and identically 
distributed, but xi depends on yi. In this case we can easy 
determine the theoretical fourth cross cumulant. For an 
uniform zero mean signal between –a and a, we have: 
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and for a Gaussian zero mean signal with a standard 
deviation σ : 
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On figure 2, we have represented the estimation of the 

three estimators (13), (15) with the moment estimators 
given by (18), and (19) of the fourth order cross 
cumulant  on the signal S(n). Note that (13) 
allows a good estimation only for stationary signal. The 
estimator (15) gives better estimation, but has a high 
variation on Gaussian signal. The new estimator (19) 
has less variation on Gaussian signal parts. But this 
estimator converge slower than (15) (see for example 
the difference between the part 2 and the part 3 of the 
signal). 

3,1Cum

 

Figure 2: Fourth cross cumulant  estimators of 
the signal S(n), (13) in red, (15) with the moment 

estimators given by (18) in blue, and (19) the forgotten 
factor is 0.99 and  in green.  
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5. CONCLUSION 

In this paper, we have introduced and compared three 
estimators of fourth cross cumulant especially for 

. In automotive environment there are many kind 
of undesirable signals, this is the reason why a blind 
source separation is needed. The car environment can be 
considered as a convolutive mixture model and for this 
model the introduced cross fourth order cumulants can 
be used.  

3,1Cum

The choice of the estimator of cross cumulant must 
be done according to the kind of signal and the time of 
adaptation expected in the application.  
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