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Abstract In the data mining field many clustering methods have been proposed,
yet standard versions do not take base on uncertain databases. This paper deals with
a new approach to cluster uncertain data by using a hierarchical clustering defined
within the belief function framework. The main objective of the belief hierarchical
clustering is to allow an object to belong to one or several clusters. To each belong-
ing, a degree of belief is associated, and clusters are combined based on the pignistic
properties. Experiments with real uncertain data show that our proposed method can
be considered as a propitious tool.

1 Introduction

Due to the increase of imperfect data, the process of decision making is becoming
harder. In order to face this, the data analysis is being applied in various fields.

Clustering is mostly used in data mining and aims at grouping a set of similar
objects into clusters. In this context, many clustering algorithms exist and are cat-
egorized into two main families. The first family involves the partitioning methods
based on density such as k-means algorithm [6] that is widely used thanks to its con-
vergence speed. It partitions the data into k clusters represented by their centers. The
second family includes the hierarchical clustering methods such as the top-down and
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the Hierarchical Ascendant Clustering (HAC) [5]. This latter consists on construct-
ing clusters recursively by partitioning the objects in a bottom-up way. This process
leads to good result visualizations. Nevertheless, it has a non-linear complexity.

All these standard methods deal with certain and precise data. Thus, in order to
facilitate the decision making, it would be more appropriate to handle uncertain data.
Here, we need a soft clustering process that will take into account the possibility that
objects belong to more then one cluster.

In such a case, several methods have been established. Among them, the Fuzzy C-
Means [1] which consists on assigning a membership to each data point correspond-
ing to the cluster center, and the weights minimizing the total weighted mean-square
error. This method constantly converges. Patently, Evidential c-Means (ECM) [3, 7]
is deemed to be a very fateful method. It enhances the FCM and generates a credal
partition from attribute data. This method deals with the clustering of object data.
Accordingly, the belief k-Modes method [4] is a popular method, which builds K
groups characterized by uncertain attribute values and provides a classification of
new instances. Schubert has also found a clustering algorithm [8] which uses the
mass on the empty set to build a classifier.

Our objective in this paper is to develop a belief hierarchical clustering method,
in order to ensure the membership of objects in several clusters, and to handle the
uncertainty in data under the belief function framework.

This reminder is organized as follows: in the next section we review the ascendant
hierarchical clustering, its concepts and its characteristics. In section 3, we recall
some of the basic concepts of belief function theory. Our method is described in
section 4 and we evaluate its performance on a real data set in section 5. Finally,
Section 6 is a conclusion for the whole paper.

2 Ascendant hierarchical clustering

This method consists on agglomerating the close clusters in order to have finally
one cluster containing all the objects x j (where j = 1, ..,N).
Let’s consider PK = {C1, ...,Ci} the set of clusters. If K = N, C1 = x1, ...,CN = xN .
Thereafter, throughout all the step of clustering we will move from a partition PK

to a partition PK−1. The result generated is described by a hierarchical clustering
tree (dendrogram), where the nodes represent the successive fusions and the height
of the nodes represents the value of the distance between two objects which gives
a concrete meaning to the level of nodes conscripted as ”indexed hierarchy”. This
latter is usually indexed by the values of the distances (or dissimilarity) for each
aggregation step. The indexed hierarchy can be seen as a set with an ultrametric
distance d which satisfies these properties: i) x = y ⇐⇒ d(x,y) = 0, ii) d(x,y) =
d(y,x), iii) d(x,y)≤ d(x,z)+d(y,z),∀x,y,z ∈ IR. The algorithm is as follows:

• Initialisation: the initial clusters are the N-singletons. We compute their dissimi-
larity matrix.

• Iterate these two steps until the aggregation turns into a single cluster:
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– Combine the two most similar (closest) elements (clusters) from the selected
groups according to some distance rules.

– Update the matrix distance by replacing the two grouped elements by the new
one and calculate its distance from each of the other classes.

Once all these steps completed, we do not recover a partition of K clusters, but
a partition of K − 1 clusters. Hence, we had to point out the aggregation criterion
(distance rules) between two points and between two clusters. We can use the Eu-
clidian distance between N objects x defined in a space IR. Different distances can
be considered between two clusters: we can consider the minimum as follows:

d(Ci
j,C

i
j′) = min

xk∈Ci
j ,xk′∈Ci

j′
d(xk,xk′) (1)

with j, j′ = 1, ..., i. The maximum can also be considered, however, the minimum
and maximum distances create compact clusters but sensitive to ”outliers”. The av-
erage can also be used, but the most used method is Ward’s method, using Huygens
formula to compute this:
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the centers. Then, we had to find the couple of clusters minimizing the distance:
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3 Basis on the theory of belief functions

In this Section, we briefly review the main concepts that will be used in our method
that underlies the theory of belief functions [9] as interpreted in the Transfer-
able Belief Model (TBM) [10]. Let’s suppose that the frame of discernment is
Ω = {ω1,ω2, ...,ω3}. Ω is a finite set that reflects a state of partial knowledge that
can be represented by a basis belief assignment defined as:

m : 2Ω → [0,1]
∑

A⊆Ω
m(A) = 1 (4)

The value m(A) is named a basic belief mass (bbm) of A. The subset A ∈ 2Ω is
called focal element if m(A) > 0. One of the important rule in the belief theory is
the conjunctive rule which consists on combining two basic belief assignments m1
and m2 induced from two distinct and reliable information sources defined as:
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m1 ∩⃝m2(C) = ∑
A∩B=C

m1(A) ·m2(B), ∀C ⊆ Ω (5)

The Dempster rule is the normalized conjunctive rule:

m1 ⊕m2(C) =
m1 ∩⃝m2(C)

1−m1 ∩⃝m2( /0)
, ∀C ⊆ Ω (6)

In order to ensure the decision making, beliefs are transformed into probability
measures recorded BetP, and defined as follows:

BetP(A) = ∑
B⊆Ω

|A∩B |
| B |

m(B)
(1−m( /0))

,∀A ∈ Ω (7)

4 Belief hierarchical clustering

In order to set down a way to develop a belief hierarchical clustering, we choose to
work on different levels: on one hand, the object level, on the other hand, the cluster
level.

At the beginning, for N objects we have, the frame of discernment is
Ω = {x1, ...,xN} and for each object belonging to one cluster, a degree of belief
is assigned. Let PN be the partition of N objects. Hence, we define a mass function
for each object xi, inspired from the k-nearest neighbors [2] method which is defined
as follows:

mΩi
i (x j) = αe−γd2(xi,x j)

m(Ω) = 1−αe−γd2(xi,x j)
(8)

where i ̸= j, α and β are two parameters we can optimize [11], d can be con-
sidered as the Euclidean distance, and the frame of discernment is given by Ωi =
{x1, ...,xN}\{xi}. In order to move from the partition of N objects to a partition of
N − 1 objects we have to find both nearest objects (xi,x j) to form a cluster. Even-
tually, the partition of N −1 clusters will be given by PN−1 =

{
(xi,x j),xk

}
where

k = 1, ...,N\{i, j}. The nearest objects are found considering the pignistic probabil-
ity, defined on the frame Ωi, of each object xi:

(xi,x j) = argmax
xi,x j∈PN

BetPΩi(x j) (9)

Then, this first couple of objects is a cluster. Now consider that we have a par-
tition PK of K clusters {C1, . . . ,CK}. In order to find the best partition PK−1 of
K − 1 clusters, we have to find the best couple of clusters to be merged. First, if
we consider one of the classical distances d, presented in section 2, between the
clusters, we delineate a mass function, defined within the frame Ωi for each cluster
Ci ∈ PK with Ci ̸=C j by:
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mΩi(C j) = αe−γd2(Ci,C j) (10)

mΩi(Ωi) = 1−αe−γd2(Ci,C j) (11)

where Ωi = {C1, . . . ,CK}\{Ci}. Then, both clusters to merge are given by:

(Ci,C j) = argmax
Ci,C j∈PK

BetPΩi(C j)∗BetPΩ j(Ci) (12)

and the partition PK−1 is made from the new cluster (Ci,C j) and all the other clus-
ters of PK . The point by doing so is to prove that if we maximize the degree of
probability we will have the couple of clusters to combine. Of course, this approach
will give exactly the same partitions than the classical ascendant hierarchical clus-
tering, but the dendrogram can be built from BetP and the best partition (i.e. the
number of clusters) can be preferred to find. The indexed hierarchy will be indexed
by the sum of BetP which will lead to more precise and specific results according to
the dissimilarity between objects and therefore will facilitate our process.

Hereafter, we define another way to build the partition PK−1. For each initial
object xi to classify, it exists a cluster of PK such as xi ∈Ck. We consider the frame
of discernment Ωi = {C1, . . . ,CK}\{Ck}, m can be noted mΩ and we define the mass
function:

mΩi(Ck j) = ∏
x j∈Ck j

αe−γd2(xi,x j) (13)

mΩi(Ωi) = 1− ∏
x j∈Ck j

αe−γd2(xi,x j) (14)

In order to find a mass function for each cluster Ci of PK , we combine all the mass
functions given by all objects of Ci by a combination rule such as the Dempster
rule of combination given by equation (6). Then, to merge both clusters we use the
equation (12) as before. The sum of the pignisitic probability will be the index of
the dendrogram, called BetP index.

5 Experimentations

Experiments were first applied on diamond data set composed of twelve objects
as describe in Figure 1.a and analyzed in [7]. The dendrograms for both classical
and Belief Hierarchical Clustering (BHC) are represented by Figures 1.b and 1.c.
The object 12 is well considered as an outlier with both approaches. With the belief
hierarchical clustering, this object is clearly different, thanks to the pignistic proba-
bility. For HAC, the distance between object 12 and other objects is small, however,
for BHC, there is a big gap between object 12 and others. This point out that our
method is better for detecting outliers. If the objects 5 and 6 are associated to 1, 2,
3 and 4 with the classical hierarchical clustering, with BHC these points are more
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identified as different. This synthetic data set is special because of the equidistance
of the points and there is no uncertainty.
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Fig. 1: Clustering results for Diamond data set.

We continue our experiments with a well-known data set, Iris data set, which
is composed of flowers from four types of species of Iris described by sepal length,
sepal width, petal length, and petal width. The data set contains three clusters known
to have a significant overlap. In order to reduce the complexity and present distinctly
the dendrogram, we first used the k-means method to get initial few clusters for our
algorithm. Several experiments have been used with several number of clusters. We
present in Figure 2 the obtained dendrograms for 10 and 13 clusters. We notice
different combinations between the nearest clusters for both classical and belief
hierarchical clustering. The best situation for BHC is obtained with the pignistic
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Fig. 2: Clustering results on IRIS data set for both hierarchical (HAC) (Fig. a and b) and belief
hierarchical (BHC) (Fig. c and d) clustering (Kinit is the cluster number by k-means first).

equal to 0.5 because it indicates that the data set is composed of three significant
clusters which reflects the real situation. For the classical hierarchical clustering the
results are not so obvious. Indeed, for HAC, it is difficult to decide for the optimum
cluster number because the measure used to merge clusters is the euclidean distance
and it is small as seen in Figure 2.c. However, for BHC, it is more easy to do this
due to the use of the pignistic probability.

In order to evaluate the performance of our method, we use some of the most
popular measures: precision, recall and Rand Index (RI). The results for both BHC
and HAC are summarized in Table 1. The first three columns are for BHC, while
the others are for HAC. In fact, we suppose that Fc represents the final number of
clusters and we start with Fc = 2 until Fc = 6. We fixed the value of kinit at 13. We
note that for Fc = 2 the precision is low while the recall is of high value, and that
when we have a high cluster number (Fc = 5 or 6), the precision will be high but the
recall will be relatively low. Thus, we note that for the same number of final clusters
(e.g. Fc = 4), our method is better in terms of precision, recall and RI.
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Table 1: Evaluation results
BHC HAC

Precision Recall RI Precision Recall RI
Fc = 2 0.5951 1.0000 0.7763 0.5951 1.0000 0.7763
Fc = 3 0.8011 0.8438 0.8797 0.6079 0.9282 0.7795
Fc = 4 0.9506 0.8275 0.9291 0.8183 0.7230 0.8561
Fc = 5 0.8523 0.6063 0.8360 0.8523 0.6063 0.8360
Fc = 6 0.9433 0.5524 0.8419 0.8916 0.5818 0.8392

6 Conclusion

Ultimately, we have introduced a new clustering method using the hierarchical
paradigm in order to implement uncertainty in the belief function framework. This
method puts the emphasis on the fact that one object may belong to several clusters.
It seeks to merge clusters based on its pignistic probability. Our method was proved
on data sets and the corresponding results have clearly shown its efficiency. The al-
gorithm complexity has revealed itself as the usual problem of the belief function
theory. Our future work will be devoted to focus on this peculiar problem.
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