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In classification of incomplete pattern, the missing values can either play a crucial role in the class
determination, or have only little influence (or eventually none) on the classification results according to
the context. We propose a credal classification method for incomplete pattern with adaptive imputation
of missing values based on belief function theory. At first, we try to classify the object (incomplete
pattern) based only on the available attribute values. As underlying principle, we assume that the missing
information is not crucial for the classification if a specific class for the object can be found using only the
available information. In this case, the object is committed to this particular class. However, if the object
cannot be classified without ambiguity, it means that the missing values play a main role for achieving an
accurate classification. In this case, the missing values will be imputed based on the K-nearest neighbor
(K-NN) and Self-Organizing Map (SOM) techniques, and the edited pattern with the imputation is then
classified. The (original or edited) pattern is classified according to each training class, and the classifi-
cation results represented by basic belief assignments are fused with proper combination rules for
making the credal classification. The object is allowed to belong with different masses of belief to the
specific classes and meta-classes (which are particular disjunctions of several single classes). The credal
classification captures well the uncertainty and imprecision of classification, and reduces effectively the
rate of misclassifications thanks to the introduction of meta-classes. The effectiveness of the proposed
method with respect to other classical methods is demonstrated based on several experiments using
artificial and real data sets.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In many practical classification problems, the available infor-
mation for making object classification is partial (incomplete)
because some attribute values can be missing due to various rea-
sons (e.g. the failure or dysfunctioning of the sensors providing
information, or partial observation of object of interest because of
some occultation phenomenon). So it is crucial to develop efficient
techniques to classify as best as possible the objects with missing
attribute values (incomplete pattern), and the search for a solution
of this problem remains an important research topic in the pattern
classification field [1,2]. Some more details about pattern classifi-
cation can be found in [3,4].

There have been many approaches developed for classifying the
incomplete patterns [1], and they can be broadly grouped into four
iu),
-rennes1.fr (A. Martin).
different types. The first (simplest) one is to remove directly the
patterns with missing values, and the classifier is designed only for
the complete patterns. This method is acceptable when the
incomplete data set is only a very small subset (e.g. less than 5%) of
the whole data set, but it cannot effectively classify the pattern
with missing values. The second type is the model-based techni-
ques [5]. The probability density function (PDF) of the input data
(complete and incomplete cases) is estimated at first by means of
some procedures, and then the object is classified using Bayesian
reasoning. For instance, the expectation-maximization (EM) algo-
rithm have been applied to many problems involving missing data
for training Gaussian mixture models [5]. In the model-based
methods, it must make assumptions about the joint distribution of
all the variables in the model, but the suitable distributions
sometimes are hard to obtain. The third type classifiers are
designed to directly handle incomplete pattern without imputing
the missing values, such as neural network ensemble methods [6],
decision trees [7], fuzzy approaches [8] and support vector
machine classifier [9]. The last type is the often used imputation
(estimation) method. The missing values are filled with proper
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1 Although the rule has been proposed originally by Arthur Dempster, we
prefer to call it Dempster–Shafer rule because it has been widely promoted by
Shafer in [16].
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estimations [10] at first, and then the edited patterns are classified
using the normal classifier (for the complete pattern). The missing
values and pattern classification are treated separately in these
methods. Many works have been devoted to the imputation of
missing data, and the imputation can be done either by the sta-
tistical methods, e.g. mean imputation [11] and regress imputation
[2], or by machine learning methods, e.g. K-nearest neighbors
imputation (KNNI) [12], Fuzzy c-means (FCM) imputation (FCMI)
[13,14], and Self-Organizing Map imputation (SOMI) [15]. In KNNI,
the missing values are estimated using K-nearest neighbors of
object in training data space. In FCMI, the missing values are
imputed according to the clustering centers of FCM and taking into
account the distances of the object to these centers [13,14]. In
SOMI [15], the best match node (unit) of incomplete pattern can be
found ignoring the missing values, and the imputation of the
missing values is computed based on the weights of the activation
group of nodes including the best match node and its close
neighbors. These existing methods usually attempt to classify the
object into a particular class with maximal probability or like-
lihood measure. However, the estimation of missing values is in
general quite uncertain, and the different imputations of missing
values can yield very different classification results, which prevent
us to correctly commit the object into a particular class.

Belief function theory (BFT), also called Dempster–Shafer the-
ory (DST) [16] and its extension [18,17] offer a mathematical fra-
mework for modeling uncertainty and imprecise information [19].
BFT has already been applied successfully for object classification
[20–28], clustering [29–33], multi-source information fusion [34–
37], etc. Some classifiers for the complete pattern based on DST
have been developed by Denœux and his collaborators to come up
with the evidential K-nearest neighbors (EK-NN) [21], evidential
neural network (ENN) [27], etc. The extra ignorance element
represented by the disjunction of all the elements in the whole
frame of discernment is introduced in these classifiers to capture
the totally ignorant information. However, the partial imprecision,
which is very important in the classification, is not well char-
acterized. We have proposed credal classifiers [23,24] for complete
pattern considering all the possible meta-classes (i.e. the particular
disjunctions of several singleton classes) to model the partial
imprecise information. The credal classification allows the objects
to belong (with different masses of belief) not only to the singleton
classes, but also to any set of classes corresponding to the meta-
classes. In [23], a belief-based K-nearest neighbor classifier (BK-
NN) has been presented, and the credal classification of object is
done according to the distances between the object and its K
nearest neighbors as well as two given (acceptance and rejection)
distance thresholds. The K-NN classifier generally takes big com-
putation burden, and this is not convenient for real application.
Thus, a simple credal classification rule (CCR) [24] has been further
developed, and the belief value of object associated with different
classes (i.e. singleton classes and selected meta-classes) is directly
calculated by the distance to the center of corresponding class and
the distinguishability degree (w.r.t. object) of the singleton classes
involved in the meta-class. The location of center of meta-class in
CCR is considered with the same (similar) distance to all the
involved singleton classes' centers. Moreover, when the training
data is not available, we have also proposed several credal clus-
tering methods [30–32] in different cases. Nevertheless, these
previous credal classification methods are mainly for dealing with
complete pattern without taking into account the missing values.

In our recent work, a prototype-based credal classification
(PCC) [25] method for the incomplete patterns has been intro-
duced to capture the imprecise information caused by the missing
values. The object hard to correctly classify is committed to a
suitable meta-class by PCC, which well characterizes the impre-
cision of classification due to the absence of part attributes and
also reduces the misclassification errors. In PCC, the missing values
in all the incomplete patterns are imputed using prototype of each
class center, and the edited pattern with each imputation is clas-
sified by a standard classifier (for complete pattern). With PCC, one
obtains c pieces of classification results for each incomplete pat-
tern in a c class problem, and the global fusion of the c results is
given for the credal classification. Unfortunately, PCC classifier is
computationally greedy and time-consuming, and the imputation
of missing values based on class prototype is not so precise. In
order to overcome the limitations of PCC, we propose a new credal
classification method for incomplete pattern with adaptive
imputation of missing values, and it can be called Credal Classifi-
cation with Adaptive Imputation (CCAI) for short.

The pattern to classify usually consists of multiple attributes.
Sometimes, the class of the pattern can be precisely determined
using only a part (a subset) of the available attributes, and it
implies that the other attributes are redundant and in fact unne-
cessary for the classification. So a new method of credal classifi-
cation with adaptive imputation strategy (i.e. CCAI) for missing
values is proposed. In CCAI, we attempt to classify the object only
using the known attributes value at first. If a specific classification
result is obtained, it very likely means that the missing values are
not very necessary for the classification, and we directly take the
decision on the class of the object based on this result. However, if
the object cannot be clearly classified with the available infor-
mation, it indicates that the missing information included in the
missing attribute values is probably very crucial for making the
classification. In this case, we present a sophisticated classification
strategy for the edition of pattern based on the proper imputation
of missing values.

K-nearest neighbors-based imputation method usually pro-
vides pretty good performances for the estimation of missing
values, but its main drawback is the big computational burden. To
reduce the computational burden, Self-Organizing Map (SOM) [38]
is applied in each class, and the optimized weighting vectors are
used to represent the corresponding class. Then, the K nearest
weighting vectors of the object in each class are employed to
estimate the missing values. For the classification of original
incomplete pattern (without imputation of missing values) or the
edited pattern (with imputation of missing values), we adopt the
ensemble classifier approach. One can get the simple classification
result according to each training class, and each classification
result is represented by a simple basic belief assignment (BBA)
including two focal elements (i.e. singleton class and ignorant
class) only. The belief of the object belonging to each class is cal-
culated based on the distance to the corresponding prototype, and
the other belief is committed to the ignorant element. The fusion
(ensemble) of these multiple BBA's is then used to determine the
class of the object. If the object is directly classified using only the
known values, Dempster–Shafer1 (DS) fusion rule [16] is applied
because of the simplicity of this rule and also because the BBA's to
fuse are usually in low conflict. In this case, a specific result is
obtained with DS rule. Otherwise, a new fusion rule inspired by
Dubois and Prade (DP) rule [39] is used to classify the edited
pattern with proper imputation of its missing values. Because the
estimation of the missing values can be quite uncertain, it natu-
rally induces an imprecise classification. So the partial conflicting
beliefs will be kept and committed to the associated meta-classes
in this new rule to reasonably reveal the potential imprecision of
the classification result.
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In this paper, we present a credal classification method with
adaptive imputation of missing values based on belief function
theory for dealing with the incomplete patterns, and it is orga-
nized as follows. The basics of belief function theory and Self-
Organizing Map is briefly recalled in Section 2. The new credal
classification method for incomplete patterns is presented in the
Section 3, and the proposed method is then tested and evaluated
in Section 4 compared with several other classical methods. The
paper is concluded in the final section.
2. Background knowledge

Belief function theory (BFT) can well characterize the uncertain
and imprecise information, and it is used in this work for the
classification of patterns. SOM technique is employed to find the
optimized weighting vectors which are used to represent the
corresponding class, and this can reduce the computation burden
in the estimation of the missing values based on K-NN method. So
the basic knowledge on BFT and SOM will be briefly recalled.

2.1. Basis of belief function theory

The Belief Function Theory (BFT) introduced by Glenn Shafer is
also known as Dempster–Shafer Theory (DST), or the Mathema-
tical Theory of Evidence [16–18]. Let us consider a frame of dis-
cernment consisting of c exclusive and exhaustive hypotheses
(classes) denoted by Ω¼ fωi; i¼ 1;2;…; cg. The power-set of Ω
denoted 2Ω is the set of all the subsets of Ω, empty set included.
For example, if Ω¼ fω1;ω2;ω3g, then 2Ω ¼ f∅;ω1;ω2;ω3;

ω1 [ ω2;ω1 [ ω3;ω2 [ ω3;Ωg. In the classification problem, the
singleton element (e.g. ωi) represents a specific class. In this work,
the disjunction (union) of several singleton elements is called a
meta-class which characterizes the partial ignorance of classifica-
tion. Examples of meta-classes are ωi [ ωj, or ωi [ ωj [ ωk. In
BFT, one object can be associated with different singleton elements
as well as with sets of elements according to a basic belief
assignment (BBA), which is a function mð�Þ from 2Ω to ½0;1�
satisfying mð∅Þ ¼ 0 and the normalization conditionP

AA2ΩmðAÞ ¼ 1. The subsets A of Ω such that mðAÞ40 are called
the focal elements of the belief mass mð�Þ.

The credal classification (or partitioning) [29] is defined as n-
tuple M¼ ðm1;…;mnÞ of BBA's, where mi is the basic belief
assignment of the object xiAX, i¼ 1;…;n associated with the
different elements in the power-set 2Θ. The credal classification
allows the objects to belong to the specific classes and the sets of
classes corresponding to meta-classes with different belief mass
assignments. The credal classification can well model the impre-
cise and uncertain information thanks to the introduction of meta-
class.

For combining multiple sources of evidence represented by a
set of BBA's, the well-known Dempster's rule [16] is still widely
used, even if its justification is an open debate and questionable in
the community [40,41]. The combination of two BBA's m1ð�Þ and
m2ð�Þ over 2Ω is done with DS rule of combination defined by mDS

ð∅Þ ¼ 0 and for Aa∅;B;CA2Ω by

mDSðAÞ ¼
P

B\C ¼ Am1ðBÞm2ðCÞ
1�P

B\C ¼ ∅m1ðBÞm2ðCÞ
ð1Þ

DS rule is commutative and associative, and makes a compromise
between the specificity and complexity for the combination of
BBA's. With this rule, all the conflicting beliefs

P
B\C ¼ ∅m1ðBÞm2ð

CÞ are proportionally redistributed back to the focal elements
through a classical normalization step. However, this redistribu-
tion can yield unreasonable results in the high conflicting cases
[40], as well as in some special low conflicting cases [41]. That is
why different rules of combination have emerged to overcome its
limitations. Among the possible alternatives of DS rule, we find
Smets' conjunctive rule (used in his transferable belief model
(TBM) [18]), Dubois–Prade (DP) rule [39], and more recently the
more complex Proportional Conflict Redistributions (PCR) rules
[42]. Unfortunately, DP and PCR rules are less appealing from
implementation standpoint since they are not associative, and
they become complex to use when more than two BBA's have to
be combined altogether.

2.2. Overview of Self-Organizing Map

Self-Organizing Map (SOM) (also called Kohonen map) [38]
introduced by Teuvo Kohonen is a type of artificial neural network
(ANN), and it is trained by unsupervised learning method. SOM
defines a mapping from the input space to a low-dimensional
(typically two-dimensional) grid of M � N nodes. So it allows us to
approximate the feature space dimension (e.g. a real input vector
xARp) into a projected 2D space, and it is still able to preserve the
topological properties of the input space using a neighborhood
function. Thus, SOM is very useful for visualizing low-dimensional
views of high-dimensional data by a nonlinear projection.

The node at position ði; jÞ; i¼ 1;…M; j¼ 1;…;N corresponds to a
weighting vector denoted by σði; jÞARp. An input vector xARp is to
be compared to each σði; jÞ, and the neuron whose weighting
vector is the most close (similar) to x according to a given metric is
called the best matching unit (BMU), which is defined as the
output of SOM with respect to x. In real applications, the Euclidean
distance is usually used to compare x and σði; jÞ. The input pattern
x can be mapped onto the SOM at location ði; jÞ where σði; jÞ is with
the minimal distance to x. It is considered that the SOM achieves a
non-uniform quantization that transforms x to σx by minimizing
the given metric (e.g. distance measure) [43].

In SOM, the competitive learning is adopted, and the training
algorithm is iterative. The initial values of the weighting vectors σ
may be set randomly, but they will converge to a stable value at
the end of the training process. When an input vector is fed to the
network, its Euclidean distance to all weight vectors is computed.
Then the BMU whose weight vector is most similar to the input
vector is found, and the weights of the BMU and neurons close to
it in the SOM grid are adjusted towards the input vector. The
magnitude of the change decreases with time and with distance
(within the grid) from the BMU. The detailed information about
SOM can be found in [38].

In this work, SOM is applied in each training class to obtain the
optimized weighting vectors that are used to represent the cor-
responding class. The number of the weighting vectors is much
smaller than the original samples in the associated training class.
We will utilize these weighting vectors rather than the original
samples to estimate the missing values in the object (incomplete
pattern), and this could effectively reduce the computation
burden.
3. Credal classification of incomplete pattern

Our new method consists of two main steps. In the first step,
the object (incomplete pattern) is directly classified according to
the known attribute values only, and the missing values are
ignored. If one can get a specific classification result, the classifi-
cation procedure is done because the available attribute informa-
tion is sufficient for making the classification. But if the class of the
object cannot be clearly identified in the first step, it means that
the unavailable information included in the missing values is likely
crucial for the classification. In this case, one has to enter in the
second step of the method to classify the object with a proper
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imputation of missing values. In the classification procedure, the
original or edited pattern will be classified according to each class
of training data. The global fusion of these classification results,
which can be considered as multiple sources of evidence repre-
sented by BBA's, is then used for the credal classification of the
object. Our new method for credal classification of incomplete
pattern with adaptive imputation of missing values is referred as
Credal Classification with Adaptive Imputation, or just as CCAI for
conciseness. CCAI is based on belief function theory, which can
well manage the uncertain and imprecise information caused by
the missing values in the classification.

3.1. First step: direct classification of incomplete pattern using the
available data

Let us consider a set of test patterns (samples) X ¼ fx1;…; xng to
be classified based on a set of labeled training patterns Y ¼ f
y1;…; ysg over the frame of discernment Ω¼ fω1;…;ωcg. In this
work, we focus on the classification of incomplete pattern in
which some attribute values are absent. So we consider all the test
patterns (e.g. xi; i¼ 1;…;n) with several missing values. The
training data set Y may also have incomplete patterns in some
applications. However, if the incomplete patterns take a very small
amount say less than 5% in the training data set, they can be
ignored in the classification. If the percentage of incomplete pat-
terns is big, the missing values must usually be estimated at first,
and the classifier will be trained using the edited (complete)
patterns. In the real applications, one can also just choose the
complete labeled patterns to include in the training data set when
the training information is sufficient. So for simplicity and con-
venience, we consider that the labeled samples (e.g. yj; j¼ 1;…; s)
of the training set Y are all complete patterns in the sequel.

In the first step of classification, the incomplete pattern say xi

will be classified according to each training class by a normal
classifier (for dealing with the complete pattern) at first, and all
the missing values are ignored here. In this work, we adopt a very
simple classification method2 for the convenience of computation,
and xi is directly classified based on the distance to the prototype
of each class.

The prototype of each class fo1;…;ocg corresponding to f
ω1;…;ωcg is given by the arithmetic average vector of the training
patterns in the same class. Mathematically, the prototype is
computed for g ¼ 1;…; c by

og ¼
1
Ng

X
yj Aωg

yj ð2Þ

where Ng is the number of the training samples in the class ωg.
In a c-class problem, one can get c pieces of simple classifica-

tion result for xi according to each class of training data, and each
result is represented by a simple BBA's including two focal ele-
ments, i.e. the singleton class and the ignorant class (Ω) to char-
acterize the full ignorance. The belief of xi belonging to class ωg is
computed based on the distance between xi and the correspond-
ing prototype og . Normalized Euclidean distance as Eq. (4) is
adopted here to deal with the anisotropic class, and the missing
values are ignored in the calculation of this distance. The other
mass of belief is assigned to the ignorant class Ω. Therefore, the
BBA's construction is done by

mog

i ðωgÞ ¼ e�ηdig

mog

i ðΩÞ ¼ 1�e�ηdig

8<
: ð3Þ
2 Many other normal classifiers (e.g. K-NN) can be selected here depending on
the preference of user, and we propose to use this simple classification method
because of its low computation complexity.
with

dig ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p

Xp
j ¼ 1

xij�ogj
δgj

� �2
vuut ð4Þ

and

δgj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ng

X
yi Aωg

ðyij�ogjÞ2
s

ð5Þ

where xij is value of xi in j-th dimension, and yij is value of yi in j-th
dimension. p is the number of available attribute values in the
object xi. The coefficient 1=p is necessary to normalize the distance
value because each test sample can have a different number of
missing values. δgj is the average distance of all training samples in
class ωg to the prototype og in j-th dimension. Ng is the number of
training samples in ωg. η is a tuning parameter, and the bigger η
generally yields smaller mass of belief on the specific class wg. It is
usually recommended to take ηA ½0:5;0:8� according to our various
tests, and η¼ 0:7 can be considered as default value.

Obviously, the smaller the distance measure, the bigger the
mass of belief on the singleton class. This particular structure of
BBA's indicates that we can just confirm the degree of the object xi

associated with the specific class ωg only according to training
data in ωg. The other mass of belief reflects the level of belief one
has on full ignorance, and it is committed to the ignorant class Ω.
Similarly, one calculates c independent BBA's mog

i ðωgÞ; g ¼ 1;…; c
based on the different training classes.

Before combining these c BBA's, we examine whether a specific
classification result can be derived from these c BBA's. This is done
as follows: if it holds that mo1st

i ðω1stÞ ¼ argmaxgðmog

i ðωgÞÞ, then the
object will be considered to belong very likely to the class ω1st,
which obtains the biggest mass of belief in the c BBA's. The class
with the second biggest mass of belief is denoted ω2nd.

The distinguishability degree χ iAð0;1� of an object xi asso-
ciated with different classes is defined by

χi ¼
mo2nd

i ðω2ndÞ
momax

i ðωmaxÞ
ð6Þ

Let ϵ be a chosen small positive distinguishability threshold
value in ð0;1�. If the condition χ irϵ is satisfied, it means that all
the classes involved in the computation of χi can be clearly dis-
tinguished of xi. In this case, it is very likely to obtain a specific
classification result from the fusion of the c BBA's. The condition
χirϵ also indicates that the available attribute information is
sufficient for making the classification of the object, and the
imputation of the missing values is not necessary. If χirϵ condi-
tion holds, the c BBA's are directly combined with DS rule to obtain
the final classification results of the object because DS rule usually
produces specific combination result with acceptable computation
burden in the low conflicting case. In such case, the meta-class is
not included in the fusion result, because these different classes
are considered distinguishable based on the condition of distin-
guishability. Moreover, the mass of belief of the full ignorance class
Ω, which represents the noisy data (outliers), can be proportion-
ally redistributed to other singleton classes for more specific
results if one knows a priori that the noisy data is not involved.

If the distinguishability condition χ irϵ is not satisfied, it
means that the classes ω1st and ω2nd cannot be clearly dis-
tinguished for the object with respect to the chosen threshold
value ϵ, indicating that missing attribute values play almost surely
a crucial role in the classification. In this case, the missing values
must be properly imputed to recover the unavailable attribute
information before entering the classification procedure. This is
the Step 2 of our method which is explained in the next
subsection.
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3.2. Second step: classification of incomplete pattern with imputa-
tion of missing values

3.2.1. Multiple estimation of missing values
In the estimation of the missing attribute values, there exist

various methods. Particularly, the K-NN imputation method gen-
erally provides good performance. However, the main drawback of
KNN method is its big computational burden, since one needs to
calculate the distances of the object with all the training samples.
Inspired by [43], we propose to use the Self-Organized Map (SOM)
technique [38] to reduce the computational complexity. SOM can
be applied in each class of training data, and thenM � N weighting
vectors will be obtained after the optimization procedure. These
optimized weighting vectors allow us to characterize well the
topological features of the whole class, and they will be used to
represent the corresponding data class. The number of the
weighting vectors is usually small (e.g. 5�6). So the K nearest
neighbors of the test pattern associated with these weighting
vectors in the SOM can be easily found with low computational
complexity.3 The selected weighting vector no. k in the class ωg,
g ¼ 1;…; c, is denoted σωg

k , for k¼ 1;…;K .
In each class, the K selected close weighting vectors provide

different contributions (weight) in the estimation of missing
values, and the weight pωg

ik of each vector is defined based on the
distance between the object xi and weighting vector σωg

k :

pωg

ik ¼ eð�λd
ωg
ik

Þ ð7Þ

with

λ¼ cNMðcNM�1Þ
2
P

i;jdðσi;σjÞ
ð8Þ

where dωg

ik is the Euclidean distance between xi and the neighbor
oωg

k ignoring the missing values, and 1=λ is the average distance
between each pair of weighting vectors produced by SOM in all
the classes; c is the number of classes; M � N is the number of
weighting vectors obtained by SOM in each class; and dðσi;σjÞ is
the Euclidean distance between any two weighting vectors σi and
σj.

The weighted mean value ŷωg

i of the selected K weighting
vectors in training class ωg will be used for the imputation of
missing values. It is calculated by

ŷωg

i ¼
PK

k ¼ 1 p
ωg

ik σ
ωg

kPK
k ¼ 1 p

ωg

ik

ð9Þ

The missing values in xi will be filled by the values of ŷωg

i in the
same dimensions. By doing this, we get the edited pattern xωg

i
according to the training class ωg.

Then xωg

i will be simply classified only based on the training
data in ωg as similarly done in the direct classification of incom-
plete pattern using Eq. (3) of Step 1 for convenience.4

The classification of xi with the estimation of missing values is
also done based on the other training classes according to this
procedure. For a c-class problem, there are c training classes, and
therefore one can get c pieces of classification results with respect
to one object.
3 The training of SOM using the labeled patterns becomes time consuming
when the number of labeled patterns is big, but fortunately it can be done off-line.
In our experiments, the running time performance shown in the results does not
include the computational time spent for the off-line procedures.

4 Of course, some other sophisticated classifiers can also be applied here
according to the selection of user, but the choice of classifier is not the main pur-
pose of this work.
3.2.2. Ensemble classifier for credal classification
These c pieces of results obtained by each class of training data

in a c-class problem are considered with different weights, since
the estimations of the missing values according to different classes
have different reliabilities. The weighting factor of the classifica-
tion result associated with the class wg can be defined by the sum
of the weights of the K selected SOM weighting vectors for the
contributions to the missing values imputation in ωg, which is
given by

ρωg

i ¼
XK
k ¼ 1

pωg

ik ð10Þ

The result with the biggest weighting factor ρωmax
i is considered

as the most reliable, because one assumes that the object must
belong to one of the labeled classes (i.e. wg, g¼1,…,c). So the
biggest weighting factor will be normalized as one. The other
relative weighting factors are defined by

α̂ωg

i ¼ ρωg

i

ρωmax
i

ð11Þ

If the condition5 α̂ωg

i oϵ is satisfied, the corresponding esti-
mation of the missing values and the classification result are not
very reliable. Very likely, the object does not belong to this class. It
is implicitly assumed that the object can belong to only one class
in reality. If this result whose relative weighting factor is very
small (w.r.t. ϵ) is still considered useful, it will be (more or less)
harmful for the final classification of the object. So if the condition
α̂wg

i oϵ holds, then the relative weighting factor is set to zero.
More precisely, we will take

αωg

i ¼
0 if α̂ωg

i oϵ

ρωg

i

ρωmax
i

otherwise:

8>><
>>: ð12Þ

After the estimation of weighting (discounting) factors αωg

i , the
c classification results (the BBA's mog

i ð�Þ) are classically discounted
[16] by

m̂og

i ðωgÞ ¼ αωg

i mog

i ðωgÞ
m̂og

i ðΩÞ ¼ 1�αωg

i þαωg

i mog

i ðΩÞ

8<
: ð13Þ

These discounted BBA's will be globally combined to get the
credal classification result. If αωg

i ¼ 0, one gets m̂og

i ðΩÞ ¼ 1, and this
fully ignorant (vacuous) BBA plays a neutral role in the global
fusion process for the final classification of the object.

Although we have done our best to estimate the missing values,
the estimation can be quite imprecise when the estimations are
obtained from different classes with the similar weighting factors,
and the different estimations probably lead to distinct classifica-
tion results. In such case, we prefer to cautiously keep (rather to
ignore) the uncertainty, and maintain the uncertainty in the
classification result. Such uncertainty can be well reflected by the
conflict of these classification results represented by the BBA's. DS
rule is not suitable here, because all the conflicting beliefs are
distributed to other focal elements. A particular combination rule
inspired by DP rule is introduced here to fuse these BBA's
according to the current context. In our new rule, the partial
conflicting beliefs are prudently transferred to the proper meta-
class to reveal the imprecision degree of the classification caused
5 The threshold ϵ is the same as in Section 3.1, because it is also used to
measure the distinguishability degree here.



Fig. 1. Flowchart of the proposed CCAI method.

6 Other traditional classifiers for complete pattern can also be selected here
according to the actual application.
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by the missing values. This new rule of combination is defined by

miðωgÞ ¼ m̂og

i ðωgÞ∏
jag

m̂oj

i ðΩÞ

miðAÞ ¼ ∏
⋃
j
ωj ¼ A

m̂oj

i ðωjÞ∏
ka j

m̂ok
i ðΩÞ

8>>>><
>>>>:

ð14Þ

The test pattern can be classified according to the fusion
results, and the object is considered belonging to the class (sin-
gleton class or meta-class) with the maximum mass of belief. This
is called hard credal classification. If one object is classified into a
particular class, it means that this object has been correctly clas-
sified with the proper imputation of missing values. If one object is
committed to a meta-class (e.g. A [ B), it means that we just know
that this object belongs to one of the specific classes (e.g. A or B)
included in the meta-class, but we cannot specify which one. This
case can happen when the missing values are essential for the
accurate classification of this object, but the missing values cannot
be estimated very well according to the context, and different
estimations will induce the classification of the object into distinct
classes (e.g. A or B).

For convenience, Fig. 1 shows the functional flowchart of this
new CCAI method.

Guideline for tuning of the parameters ϵ and η: The tuning of
parameters η and ϵ is very important in the application of CCAI. η
in Eq. (3) is associated with the calculation of mass of belief on the
specific class, and the bigger η value will lead to smaller mass of
belief committed to the specific class. Based on our various tests,
we advise to take ηA ½0:5;0:8�, and the value η¼ 0:7 can be taken
as the default value. The parameter ϵ is the threshold to tune for
changing the classification strategy. It is also used in Eq. (12) for
the calculation of the discounting factor. The bigger ϵ will make
fewer objects going to the sophisticated classification procedure
with the imputation of missing values, and it also forces more
discounting factors to zero according to Eq. (12), which implies
that fewer simple classification results obtained based on each
class can be useful in the global fusion step. So the bigger ϵ will
make fewer objects committed to the meta-classes (corresponding
to the low imprecision of classification), but it increases the risk of
misclassification error. ϵ should be tuned according to the com-
promise one can accept between the misclassification error and
imprecision (non specificity of classification decision). One can
also apply the cross validation [44] (e.g. leave-one-out method) in
the training data space to find a suitable threshold, and the
missing values in the test samples are randomly distributed in all
the dimensions.
4. Experiments

Three experiments with artificial and real data sets have been
used to test the performance of this new CCAI method compared
with the K-NN imputation (KNNI) method [12], FCM imputation
(FCMI) method [13,14], SOM imputation (SOMI) [15] method and
our previous credal classification PCC method [25]. SOM technique
is also employed in the second step of CCAI method, but CCAI is
different from the previous SOMI method. In SOMI method, SOM is
applied for the whole training data set, and the missing values are
precisely estimated based on an activation group composed of the
best match node (unit) of input pattern and its close neighbors.
Then, the edited pattern with the imputation of missing values can
be classified using a standard classifier. Nevertheless, SOM is not
involved in the first step of CCAI, and the object is directly clas-
sified ignoring the missing values. In the second step of CCAI, SOM
is applied in each training class, and multiple estimations of
missing values can be obtained based on the input pattern's K
nearest weighting vectors corresponding to nodes of SOM in each
class. Then different classification results will be produced
according to different estimations, and these results are globally
fused for final classification. The conflicting information com-
mitted to the meta-class is kept in the fusion to characterize the
imprecision of classification in CCAI, but this cannot be done in
SOMI. These different methods have been programmed and tested
with Matlab™ software.

The evidential neural network classifier (ENN) [27] is adopted
in the sequel experiments to classify the edited pattern with the
estimated values in PCC, KNNI and FCMI, since ENN produces
generally good results in the classification.6 The evidential K-
nearest neighbor (EK-NN) method [21] is also used to classify the
edited pattern in Experiment 3 with real data for comparison. The
parameters of ENN and EK-NN can be automatically optimized as
explained in [27] and [22] respectively. In SOMI, we use the M �
N¼ 6� 8 nodes for mapping the whole input data set consisting of
all the training classes to the 2-dimensional grid, and it has good
performance. In the applications of PCC, the tuning parameter ϵ
can be tuned according to the imprecision rate one can accept. In
CCAI, a small number of the nodes in the 2-dimensional grid of
SOM are given by M � N¼ 3� 4 for each class, and we take the
value of K ¼N¼ 4 in K-NN for the imputation of missing values.
This seems to provide good result in the sequel experiments. In
order to show the ability of CCAI and PCC to deal with the meta-
classes, the hard credal classification is applied, and the class of
each object is decided according to the criterion of the maximal
mass of belief.

In our simulations, the misclassification is declared (counted)
for one object truly originated from ωi if it is classified into A with
ωi \ A¼∅. If ωi \ Aa∅ and Aaωi then it will be considered as
an imprecise classification. The error rate denoted by Re is calcu-
lated by Re¼Ne=T , where Ne is number of misclassification errors,
and T is the number of objects under test. The imprecision rate
denoted by Rij is calculated by Rij ¼Nij=T , where Nij is number of
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objects committed to the meta-classes with the cardinality value j.
In our experiments, the classification of object is generally
uncertain (imprecise) among a very small number (e.g. 2) of
classes, and we only take Ri2 here since there is no object com-
mitted to the meta-class including three or more specific classes.

4.1. Experiment 1 (artificial data set)

In the first experiment, we show the interest of credal classi-
fication based on belief functions with respect to the traditional
classification working with probability framework. A 3-class data
set Ω¼ fω1;ω2;ω3g obtained from three 2-D uniform distribu-
tions shown by Fig. 2, is considered here. Each class has 200
training samples and 200 test samples, and there are 600 training
samples and 600 test samples in total. The uniform distributions of
the three classes are characterized by the following interval
bounds:
ω1

ω2

7 In fact, the choice
results.
of K ranking from 7 to 15 does no
x-label interval
 y-label interval
(5, 65)
 (5, 25)
(95, 155)
 (5, 25)
(50, 110)
 (50, 70)
ω3

The values in the second dimension corresponding to the y-
coordinate of test samples are all missing. So test samples are
classified according to the only one available value in the first
dimension corresponding to x-coordinate.

Several different methods like FCMI, KNNI, SOMI have been
applied here for comparison with CCAI as shown by Fig. 3(a)–(f).
Particularly, the classification result obtained using the (first or
second) single step of CCAI (denoted by SCCAI) is also given as in
Fig. 3(d)–(e). In the first step of CCAI, the direct classification is
done without imputation of missing value, whereas the object is
classified with imputation of missing values in all incomplete
patterns by only the second step of CCAI.

A particular value of K¼9 is selected in the classifier K-NN
imputation method.7 For notation conciseness, we have denoted
ωte9ωtest , ωtr9ωtraining and ωi;…;k9ωi [ … [ ωk. The error rate
(in %), imprecision rate (in %) and computation time (s) are spe-
cified in the caption of each subfigure.

Because the y value in the test sample is missing, the class w3

appears partially overlapped with the classes ω1 and ω2 on their
t affect seriously the
margins according to the value of the x-coordinate as shown in
Fig. 3(a). The missing value of the samples in the overlapped parts
can be filled by quite different estimations obtained from different
classes with the almost same reliabilities. For example, the esti-
mation of the missing values of the objects in the right margin of
ω1 and the left margin of ω3 can be obtained according to the
training class ω1 or ω3. The edited pattern with the estimation
from ω1 will be classified into class ω1, whereas it will be com-
mitted to class ω3 if the estimation is drawn from ω3. It is similar
to the test samples in the left margin of ω2 and the right margin of
ω3. This indicates that the missing value plays a crucial rule in the
classification of these objects, but unfortunately the estimation of
these involved missing values are quite uncertain according to
context. So these objects are prudently classified into the proper
meta-class (e.g. ω1 [ ω3 and ω2 [ ω3) by CCAI. The CCAI results
indicate that these objects belong to one of the specific classes
included in the meta-classes, but these specific classes cannot be
clearly distinguished by the object based only on the available
values. If one wants to get more precise and accurate classification
results, one needs to request for additional resources for gathering
more useful information. The other objects in the left margin of
ω1, right margin of ω2 and middle of ω3 can be correctly classified
based on the only known value in the x-coordinate, and it is not
necessary to estimate the missing value for the classification of
these objects in CCAI. However, all the test samples are classified
into specific classes by the traditional methods KNNI and FCMI,
and this causes many errors due to the limitation of probability
framework. If we just apply the first step of SCCAI without
imputation of the missing value and directly classify all the objects
using the only known value (i.e. value in the x-coordinate), it
produces bigger error rate than the other methods, and this
indicates that the imputation procedure is important to improve
the accuracy of classification. If only the second step of SCCAI is
done with imputation of the missing values in all incomplete
patterns, it causes high imprecision rate that is not an efficient
solution, and it takes much longer computation time than CCAI.
CCAI with the adaptive imputation strategy can well balance the
error rate, imprecision rate and computation burden. CCAI con-
sisting of two steps generally produces smaller error rate than
KNNI, FCMI and SOMI thanks to the use of meta-classes. Mean-
while, the computational time of CCAI is similar to that of FCMI,
and is much shorter than KNNI because of the introduction of SOM
technique in the estimation of missing values. It shows that the
computational complexity of CCAI is relatively low. This simple
example shows the interest and the potential of the credal clas-
sification obtained with CCAI method.

4.2. Experiment 2 (artificial data set)

In this second experiment, we evaluate the performance of
CCAI method using a 4D data set which includes 3 classes ω1, ω2,
and ω3. The artificial data are generated from three 4D Gaussian
distributions characterized by the following means, vectors and
covariance matrices (I denotes the 4� 4 identity matrix):

μ1 ¼ ð10;50;100;100ÞT ; Σ1 ¼ 10 � I
μ2 ¼ ð30;40;50;90ÞT ; Σ2 ¼ 15 � I
μ3 ¼ ð20;80;90;130ÞT ; Σ3 ¼ 12 � I

We have used g training samples, and g test samples (for g¼500,
and g¼1000) in each class. So there are total N¼ 3� g training
samples and N¼ 3� g test samples. Each test sample has n
missing values (for n¼ 1;2;3), and the missing component value is
randomly distributed in every dimension. Three other methods
KNNI, FCMI, SOMI and PCC are also applied here for the
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Fig. 3. Classification results of a 3-class artificial data set by different methods. (a). Classification result by FCMI (Re¼ 14:67; time¼ 0:0469 s). (b). Classification result by KNNI
(Re¼ 14:17; time¼ 7:9531 s). (c). Classification result by SOMI (Re¼ 14:33; time¼ 0:9063 s). (d). Classification result only by 1st step of SCCAI (Re¼ 14:83; time¼ 0:0156 s).
(e). Classification result only by 2nd step of SCCAI (Re¼ 4:83;Ri2 ¼ 19:33; time¼ 0:1719 s). (f). Classification result by CCAI (Re¼ 5:83;Ri2 ¼ 16:83; time¼ 0:0469 s).
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performances comparison. For each pair ðN;nÞ, the reported error
rates, imprecision rates and running time (s) are the averages over
10 trials performed with 10 independent random generation of the
data sets. For KNNI, the values of K ranging from 5 to 20 neighbors
have been tested, and the mean error rate with KA ½5;20� is given
in Table 1. In PCC method, the parameter ϵ has been optimized to
obtain an acceptable compromise between error rate and the
imprecision degree. ENN is adopted to classify the edited pattern
with imputation of missing values in FCMI, KNNI, SOMI and PCC.

The classification results of the applied methods (i.e. FCMI,
KNNI, SOMI, PCC and CCAI) have been shown in Table 1. Our
proposed CCAI method produces the lowest error rate, since some
objects hard to correctly classify because of the missing values
have been committed to the proper meta-class. Meanwhile, CCAI



Table 1
Classification results for 3-class data set by different methods (in %).

ðN;nÞ FCMI KNNI SOMI PCC CCAI
fRe; timeg fRe; timeg fRe; timeg fRe;Ri2 ; timeg fRe;Ri2; timeg

(1500,1) {6.73, 0.9094 s} {7.42, 3.0005 s} {7.22, 0.9814 s} {6.20, 2.33, 0.3484 s} {4.64, 3.87, 0.2500 s}
(1500,2) {14.38, 0.9016 s} {15.68, 2.7759 s} {15.43, 0.9546 s} {13.47, 5.93, 0.3141 s} {9.76, 9.79, 0.2344 s}
(1500,3) {36.84, 0.9391 s} {40.11, 3.002 s} {40.10, 1.0322 s} {34.57, 7.97, 0.3484 s} {29.71, 15.6, 0.2906 s}

(3000,1) {6.75, 1.3922 s} {7.54, 12.0386 s} {7.14, 1.7310 s} {6.17, 1.63, 0.5453 s} {4.73, 3.83, 0.3469 s}
(3000,2) {14.73, 1.5375 s} {15.80, 11.3857 s} {15.20, 1.8203 s} {14.00, 1.60, 0.5234 s} {9.90, 10.33, 0.3063 s}
(3000,3) {36.43,1.6500 s} {40.48, 10.2803 s} {40.05, 1.6094 s} {33.94, 8.13, 0.5484 s} {29.52, 16.83, 0.3937 s}

Table 2
Basic information of the used data sets.

Name Classes Attributes Instances

Breast 2 9 699
Hepatitis 2 19 155
Statlog (Heart) 2 13 270
Iris 3 4 150
Seeds 3 7 210
Wine 3 13 178
Knowledge 4 5 403
Vehicle 4 18 946
Yeast 7 8 1429
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takes the shortest computation time compared with the other
methods. This is because some incomplete patterns are directly
classified ignoring the missing values, which are considered
unimportant for the classification. However, the missing values in
each pattern are all imputed by other methods, and this needs
more computations and thus increases the computational time.
Moreover, one can see that KNNI takes the longest time, and this is
the main drawback of K-NN based method. The K-NN strategy is
also adopted in CCAI, but we use a few optimized weighting vec-
tors acquired by SOM technique to represent the whole training
data class. Thus, we just need to calculate the distances between
the object and these obtained weighting vectors rather than all the
training samples, which reduces a lot the computation burden.

4.3. Experiment 3 (real data set)

Nine well known real data sets8 available from UCI Machine
Learning Repository [45] are used in this experiment to evaluate
the performance of CCAI with respect to KNNI, FCMI, SOMI and
PCC. Both ENN and EK-NN are employed here as standard classifier
to classify the edited patterns. Moreover, the single (1st and 2nd)
step procedure of CCAI (SCCAI) has been also applied here for
comparison. In the first step of SCCAI, the object is directly clas-
sified using the only available attributes without imputation pro-
cedure, whereas all the missing values are imputed before the
classification in the second step of SCCAI. The basic information of
these used real data sets is given in Table 2. In Hepatitis data set,
many patterns have already contained missing values. The pat-
terns with missing values are considered as test samples, and the
others are used as training samples. There is no missing values in
the other seven original data sets, and it is assumed that n values
are missing completely at random in all dimensions of each test
sample. The cross validation is performed for these seven data
sets, and we use the simplest 2-fold cross validation9 here, since it
has the advantage that the training and test sets are both large,
and each sample is used for both training and testing on each fold.
The 2-fold cross validation has been repeated 10 times, and the
average error rate Re and imprecision rate Ri (for PCC and CCAI) of
the different methods are given in Table 3. Particularly, the
reported classification result of KNNI is the average with K value
ranging from 5 to 15. For the notation conciseness, the selected
classifier (SC) is denoted by A¼EK-NN, B¼ENN in Table 3. For the
method of single step of CCAI (SCCAI), A represents the first step of
SCCAI, and B represents the second step of SCCAI.

One can see in Table 3 that the credal classification of PCC and
CCAI always produce the lower error rate than the traditional
FCMI, KNNI and SOMI methods, since some objects that cannot be
correctly classified using only the available attribute values have
8 We select seven classes from Yeast data set, because the last three classes (i.e.
VAC POX and ERL) contain quite few samples.

9 More precisely, the samples in each class are randomly assigned to two sets
S1 and S2 having equal size. Then we train on S1 and test on S2, and reciprocally.
been properly committed to the meta-classes, which can well
reveal the imprecision of classification. The selected classifiers (i.e.
EK-NN and ENN) for classification of edited patterns in FCMI,
KNNI, SOMI and PCC are usually with the similar performance in
many cases,10 but it is known that the K-NN based method gen-
erally has big computation burden. The choice of EK-NN and ENN
should be made according to the actual condition in real applica-
tions. In CCAI, some objects with the imputation of missing values
are still classified into the meta-class. It indicates that these
missing values play a crucial role in the classification, but the
estimation of these missing values is not very good. In other
words, the missing values can be filled with the similar reliabilities
by different estimated data, which lead to distinct classification
results. So we have to cautiously assign them to the meta-class to
reduce the risk of misclassification. Compared with our previous
method PCC, this new method CCAI generally provides better
performance with lower error rate and imprecision rate, and it is
mainly because more accurate estimation method (i.e.
SOMþKNN) for missing values is adopted in CCAI. However, if
only the first step of SCCAI is applied, it produces more mis-
classification errors that other methods due to the absence of
imputation of missing data. Whereas, the imprecision rate will be
quite high if only the second step of SCCAI is adopted because all
the conflicting beliefs caused in the combination procedure are
transferred to the meta-classes. So CCAI with adaptive imputation
of missing values can provide a good compromise between the
error and imprecision. This third experiment using real data sets
shows the effectiveness and interest of this new CCAI method with
respect to other methods.
5. Conclusion

A new credal classification method with adaptive imputation of
missing values (called CCAI) for dealing with incomplete pattern
has been presented based on belief function theory. In the first
step of CCAI method, some objects (incomplete pattern) are
10 EK-NN outperforms ENN sometimes, but ENN can be better in some
other cases.



Table 3
Classification results for different real data sets (rates in %).

Data set (n, SC) FCMI KNNI SOMI PCC SCCAI CCAI
Re Re Re fRe;Ri2g fRe;Ri2g fRe;Ri2g

Hepatitis A 26.40 27.38 27.47 {22.22, 7.56} {23.67, 0} {21.33, 5.33}
B 25.33 26.67 25.33 {20.00, 6.67} {20.00, 8.00}

Breast (3,A) 3.96 4.83 3.85 {4.39, 2.20} {4.98, 0} {3.66, 0}
(3,B) 3.81 3.95 3.51 {3.81, 2.34} {3.22, 0.73}
(6,A) 6.18 9.07 6.47 {5.82, 1.93} {6.15, 0} {4.83, 1.61}
(6,B) 7.32 8.20 5.93 {5.42, 1.32} {4.72, 2.93}
(7,A) 12.02 14.00 13.62 {10.11, 2.86} {12.15, 0} {9.00, 0.66}
(7,B) 11.42 11.54 12.45 {10.10, 2.64} {7.03, 17.11}

Iris (1,A) 6.89 5.29 5.14 {4.80, 2.04} {6.67, 0} {4.00, 1.33}
(1,B) 7.33 4.89 5.00 {5.33, 2.67} {4.00, 3.33}
(2,A) 13.89 13.02 13.24 {8.31, 6.27} {12.00, 0} {8.00, 4.67}
(2,B) 14.00 11.33 12.67 {8.67, 4.00} {7.33, 8.00}
(3,A) 18.22 18.67 18.00 {13.33, 8.67} {17.33, 0} {11.33, 12.00}
(3,B) 17.33 18.44 17.34 {12.67, 9.33} {10.67, 16.00}

Seeds (2,A) 15.56 11.59 11.63 {10.51, 2.95} {9.52, 0} {9.52, 0}
(2,B) 15.24 11.19 10.20 {9.52, 4.76 } {9.52, 0.95}
(4,A) 18.17 12.70 12.86 {10.22, 3.52} {10.48, 0} {10.00, 0.48}
(4,B) 17.14 11.98 12.59 {10.48, 4.29} {9.52, 1.90}
(6,A) 21.75 26.41 25.65 {17.84, 10.32} {22.86, 0} {16.19, 13.81}
(6,B) 20.95 25.71 24.63 {16.19, 14.76} {8.10, 28.57}

Wine (3,A) 29.32 27.12 27.53 {27.38, 0.71} {6.97, 0} {6.74, 1.12}
(3,B) 26.97 26.97 28.65 {26.97, 1.69} {6.18, 8.43}
(7,A) 34.68 26.22 31.30 {27.12, 0.79} {7.87, 0} {7.30, 3.93}
(7,B) 33.24 30.43 31.46 {29.78, 2.25} {5.62, 9.55}
(11,A) 34.76 29.55 34.35 {29.06, 1.61} {14.61, 0} {12.36, 3.93}
(11,B) 33.43 30.90 32.58 {30.34, 2.81} {10.67, 40.45}

Knowledge (1,A) 30.07 28.53 29.78 {26.72, 4.05} {27.55, 0} { 20.85, 6.20}
(1,B) 34.50 33.51 33.88 {28.35, 6.31} {20.10, 8.19}
(2,A) 33.06 29.66 31.51 {27.32, 5.36} {30.69, 0} {23.57, 6.95}
(2,B) 39.68 39.43 41.69 {33.32, 7.73} {20.35, 13.40}
(3,A) 34.32 32.96 35.24 {29.86, 9.97} {34.16, 0} {30.51, 7.69}
(3,B) 39.96 40.69 42.04 {33.76, 11.82} {22.08, 21.59}

Heart (1,A) 37.41 37.78 36.67 {33.41, 12.59} {17.78, 0} {16.30, 0.37}
(1,B) 41.18 41.85 41.11 {36.30, 9.63} {13.70, 21.48}
(5,A) 48.15 38.27 41.48 {35.06, 25.93} {23.70, 0} {22.96, 0.74}
(5,B) 46.89 43.09 42.96 {32.96, 28.52} {22.59, 8.89}

Vehicle (5,A) 46.00 41.13 41.25 {35.63, 25.75} {50.71, 0} {34.87, 26.48}
(5,B) 56.66 55.67 54.73 {37.87, 27.43} {27.66, 50.24}
(9,A) 57.97 45.27 45.68 {38.63, 22.73} {52.25, 0} {36.64, 22.34}
(9,B) 61.82 57.92 57.71 {43.63, 26.95} {28.61, 56.97}

Yeast (1,A) 46.57 46.04 45.51 {42.71, 11.12} {46.67, 0} {40.28, 12.36}
(1,B) 44.97 44.72 44.86 {39.86, 13.92} {27.08, 46.74}
(3,A) 54.29 54.22 54.88 {51.86, 10.87} {56.74, 0} {49.75, 12.64}
(3,B) 51.72 52.81 53.89 {49.38, 13.69} {34.38, 49.31}
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directly classified ignoring the missing values if the specific clas-
sification result can be obtained, which effectively reduces the
computation complexity because it avoids the imputation of the
missing values. However, if the available information is not suffi-
cient to achieve a specific classification of the object in the first
step, we estimate (recover) the missing values before entering the
classification procedure in a second step. The SOM and K-NN
techniques are applied to make the estimation of missing attri-
butes with a good compromise between the estimation accuracy
and computation burden. The credal classification in this work
allows the object to belong to different singleton classes and meta-
class (i.e. disjunction of several classes) with different masses of
belief. Once the object is committed to a meta-class (e.g. A [ B), it
means that the missing values cannot be accurately recovered
according to the context, and the estimation is not very good.
Different estimations will lead the object to distinct classes (e.g. A
or B) involved in the meta-class. So some other sources of infor-
mation will be required to achieve more precise classification of
the object if necessary. The credal classification is able to well
capture the imprecision of classification thanks to the meta-class
and it effectively reduces the misclassification errors. The effec-
tiveness and interest of the proposed CCAI method have been
evaluated on three distinct experiments using artificial and real
data sets.
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