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Abstract – In this paper1, we present an approach
of automatic seabed recognition from multiple views of
side-scan sonar. We integrate detailed knowledge about
each view: the nature of the seabed, the position and
the uncertainty and the imprecision related to each in-
formation. To exploit information from multiple views,
a fusion strategy for seabed recognition has been de-
veloped. It is based on the theory of belief functions,
that deals with the imperfection of information, com-
puted over tiles of seabed. We show the application of
our method on simulated sonar data given by an au-
tonomous underwater vehicle. This application illus-
trates the interest of a belief fusion approach and the
analysis of the final results show the benefits.

Keywords: Multi-view, Fusion, Belief functions, Au-
tonomous Underwater Vehicles, Seabed recognition.

1 Introduction
Seabed recognition are among the various applications
that need view-specific inputs. Autonomous Under-
water Vehicles (AUV) are used to explore underwater
seabed using specific sensors such as sonar. A typi-
cal mission of an AUV is to map an area to determine
the nature of seabed or to determine if there are any
sort of mines. Each mission is controlled by a trajec-
tory defined by an expert and gives a map of seabed of
the explored area. Our objective is to define automat-
ically this trajectory based on previous missions (pre-
vious maps) to explore areas with risks or with a poor
map. For this aim, we use the multi-view information
(resulting from multiple viewpoints of a single mission
or more) that we combine to give a more accurate and
an optimized map of the observed area. Figure 1 gives
an example of a mission trajectory and the correspond-
ing simulated seabed.

The information gathered, in most cases, is corrupted
by imperfections generally related to the studied envi-
ronment and the used sensors. In this work, the infor-

1This work was partially supported by the project ASEMAR
of the pole Mer Bretagne.

Figure 1: An example of an explored area (green: silt,
blue: sand, magenta: gravel and black: rock)

mation is described by the kind of seabed: for a given
position of the sonar, we have the information about
seabed in the perpendicular direction of the side-scan
sonar. Thus, the information depends on the position
which is imprecise and not well known. Several choices
are suitable to tackle this kind of imprecise informa-
tion: either we try to remove these imperfections, which
requires a comprehension of the physics which led to
them; or we try to develop a robust system to cope
with these imperfections; or we try to model them. A
precise modeling of uncertain and imprecise data can
be carried out using the theories of uncertainty like the
fuzzy sets theory [18], the possibilities theory [19, 7] or
the theory of belief functions [4, 15]. Our choice fell on
the theory of belief functions which, in the same the-
oretical framework, model uncertainty and imprecision
and also offers advantages to model the lack of infor-
mation from each viewpoint.

The organization of this paper is as follows: In Sec-
tion 2, we present the multi-view fusion for the seabed
recognition with the theory of the belief functions and
the voting fusion. Therefore we give a description of
the simulated data used to validate the approach of
multi-view fusion. We present and discuss classifica-
tion results in Section 3.3.
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2 Multi-view fusion for seabed

recognition

The multi-view fusion for seabed recognition can be
expressed as a problem of combining classification re-
sults (seabed classes) from each viewpoint. The conven-
tional methods from the theory of uncertainty (fusion
by weighted voting, Bayesian fusion, belief functions fu-
sion, etc.) can be used to achieve this fusion [10, 11].
In these theories of uncertainty, two different concepts
are required to fully model data imperfections: the un-
certainty and imprecision. The uncertainty character-
izes a degree of conformity with reality (qualitative de-
fault of information), while imprecision measures a lack
of quantitative information (for example an error mea-
surement) [11].

Several studies in the literature use the information
extracted from several viewpoints to detect objects,
such as in [3]; they studied the contribution of the use
of multiple sonar viewpoints to improve classification
rates of objects. In the same context, [2] use multi-
view classification for mines detection. For sonar im-
ages, multi-view classification has seen several interests
such as the positioning of an autonomous underwater
robot, and generally requires an image registration [6].
Multi-view fusion was also used for classification of the
gender based on a walk sequence [8]. In the field of re-
mote sensing, [13] have used an approach based on the
theory of the belief functions and the theory of possi-
bilities to detect land-mines.

The general principle of an information fusion ap-
proach is described in Figure 2. Thus we consider the
information from different viewpoints to combine, as
well as additional information and knowledge related
to external application to assist the combination.

Fusion
Multi-view 

Sources

Results

Quality

Aditional 

Information
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Knowledge

Figure 2: Representation of the information fusion

Therefore the process for information fusion is de-
scribed by four steps: the modeling, the estimation, the
combination and the decision (cf. Fig 3). The model
defines the choice of the used formalism, which will be
in our case the theory of belief functions. The esti-
mation defines the used functions, depending on the
application, in the modeling stage. The combination
is the information consolidation phase. The last step
gives a decision over the combination result.
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Figure 3: Fusion node

2.1 Multi-view fusion with belief func-

tions

We propose here the use of the theory of the belief func-
tions for multi-view fusion for a better seabed recogni-
tion.

The theory of belief functions is based on the use of
mass functions. The mass functions are defined over
2Θ the set of all possible disjunctions realized using ele-
ments from the frame of discernment Θ = {C1, . . . , CN}
and of values in [0, 1], where Cq represents the assump-
tion “the tile belongs to the class q”. Moreover, we add
a condition of normalization, given by:

∑

A∈2Θ

m(A) = 1, (1)

wherem(.) represents the mass function. The first diffi-
culty is to define these mass functions according to the
problem. Other belief functions can be defined from
these mass functions, such as the functions of credibil-
ity, representing the intensity that all sources believe in
an element, and as the functions of plausibility repre-
senting the degree with which we believe on an element.

In order to estimate the mass functions to be com-
bined, [1] suggests two models addressing three axioms
which involve the use of N mass functions, each having
only three focal elements {Cq}, {Cc

q} and Θ. Such a
function is called dichotomous mass function. Further-
more, an axiom guarantees the equivalence with the
Bayesian approach where the reality is perfectly known.
Both models are substantially equivalent for our data,
we use in this article the model (denoted model 1 ) given
by:























miq(Cq)(x) =
αiqRip(Vi(x)/Cq)

1 +Rip(Vi(x)/Cq)

miq(C
c
q )(x) =

αiq

1 +Rip(Vi(x)/Cq)

miq(Θ)(x) = 1 − αiq

(2)

where p is a probability, Ri = (maxi,q p(Vi(x)/Cq))
−1 is

a normalization factor, and αiq ∈ [0, 1] is a discounting
factor. αiq controls the reliability of the information
provided by the view i: Vi(x) for a class Cq that we
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choose equal to 0.95 without more information. The
difficulty for this model is the estimation of probabil-
ities p(Vi(x)/Cq). Since the given Vi(x) of the view i
is the response of a classifier given in the form of class
(symbolic data), the estimation of these probabilities
can be realized using the confusion matrices during the
learning step.

Denœux [5] proposes another estimation of the mass
functions using a distance based model (we denote it
model 2 ), defined for each nearest tile xε

j by:

{

mε
j(Ci|xj)(x) = αie

γid
2(x,xε

j)

mε
j(Θ|xj)(x) = 1 − αie

γid
2(x,xε

j)
(3)

where Ci is the associated class to xε
j , and {xε

j}j=1,...,k

are the ε-nearest tiles to x (i.e d2(x, xε
j) ≤ ε). The dis-

tance d used is the euclidean metric. αi and γi are coef-
ficients of discounting, and of normalization which can
be optimized [20]. The mass functions are computed
in a different from the one proposed in [5] to compute
mass functions. In [5], the authors fix the number of
neighbors used to compute the mass functions. Here,
we look for tiles in the sphere of radius ε and centered
in x. This estimation approach allows to integrate the
imprecision of the position.

The combination of N (number of views) mass func-
tions can be a real problem if this number is high.
Indeed, the first combination rule in the belief func-
tion framework proposed by Dempster is the normal-
ized conjunctive combination rule given for two mass
functions m1 and m2 and for all X ∈ 2Θ, X 6= ∅ by:

mD(X) =
1

1 − k

∑

A∩B=X

m1(A)m2(B), (4)

where k =
∑

A∩B=∅

m1(A)m2(B) is the inconsistence of

the combination.
Smets [16] proposes to consider an open world, there-

fore the conjunctive rule is non-normalized and we have
for two mass functions m1 and m2 and for all X ∈ 2Θ

by:

mConj(X) =
∑

A∩B=X

m1(A)m2(B). (5)

mConj(∅) can be interpreted as a non-expected solution.
In the Transferable Belief Model of Smets, the reparti-
tion of the inconsistence is done in the decision step by
the pignisitic probability (6).

These two rules (4) and (5) are not idempotent. So
the combination of n-times the same mass function m,
mConj(∅) and mD(∅) tend to 1 when n tends toward ∞,
that is what we call the auto-conflict in [14]. Hence the
normalization by 1 − k in the combination rule (4) or
in the pignistic probability can be problematic. Many
other rules have been proposed, a brief state of the art
as well as new rules for coping with the conflict within
the combination are given by [12].

In order to preserve maximum of information, it is
preferable to stay on a credal level (i.e. to handle belief
functions) during the information combination stage to
make the decision on the belief functions resulting from
this combination. If the decision taken by the maxi-
mum of credibility is too pessimistic, the decision ob-
tained by the maximum of plausibility is too optimistic.
The maximum of the pignistic probability, introduced
by [17], is the most used compromise. The pignistic
probability is given for all X ∈ 2Θ, with X 6= ∅ by:

betP(X) =
∑

Y ∈2Θ,Y 6=∅

|X ∩ Y |

|Y |

m(Y )

1 −m(∅)
. (6)

2.2 Weighted voting fusion

The simplest approach for fusion is the majority vot-
ing approach based on the combination of classes of
classified tiles. The fusion is done using the principle of
majority voting by taking the maximum on the number
of times that the tile x is assigned to a given class [9].
We calculate the normalized histogram px of number
of times that tiles xi, i = 1, . . . , Nx, are classified to a
class Cq, q = 1, . . . , N :

px(Cq) =
card{i = 1, . . . , Nx ;xi ∈ Cq}

Nx

. (7)

Using this approach, the class Cx of tile x is the max-
imum of px:

Cx = argmax
q=1,...,N

px(Cq). (8)

If the maximum is reached for several values of q, we
can choose, for example, the class of the nearest tile to
x.

Let Mx = px(Cx) be the value of the maximum of px.
Calculating the value of Mx of all tiles in the vicinity
of x, we form a matrix of class of tiles x noted Ix and a
matrix Ic containing the values Mx. This matrix (with
a maximum of 1) indicates a sort of “certainty” on the
classification of each tile: a value close to 1 indicates
that the classifier is “sure” about the class devoted to
this zone.

We did not make a difference, in terms of distance
between the tiles in the vicinity of the tile x for the
decision of its class. We can use a weighting of these
tiles using a “high” weight for the neighborhood tiles
xi0 and a “low” weight for the other tiles. This weight
is a function ψρ decreasing with distance between the
tile x and the other neighborhood tiles. For example:

ψρ(x) = e−ρd2(x0,x), ρ ≥ 0, (9)

In this case, to find Cx the class of the tile x, we use
a weighted vote by weighting the value of the histogram
hx by the summation of weights of tiles in vicinity of x
of the same class:

pw(q) = px(Cq)
∑

i∈Cq

ψρ(d2(x, xi)), (10)
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where xi are the neighborhood tiles of x.

Cx = argmax
q=1,...,N

pw(q). (11)

3 Experiments
We describe in this section the simulated data to vali-
date the approach of multi-view belief fusion for seabed
recognition. We give in Section 3.3 the obtained results
using the belief approach based on the confusion ma-
trix model and the distance model to compute mass
functions. Results are compared to the classical vote
approach.

3.1 Simulated data

The data are obtained from two simulated missions of
an AUV on a same area but at different times and with
different trajectories. The simulated trajectories are
designed to present a strong sonar overlapping. The
data and trajectories were simulated and may not be
fully representative of the difficulty of a real operational
context. They were simulated for the benefit of an ini-
tial stage of the study. Data are expressed by the kind
of seabed found in the transition of the AUV. For a
given position of the AUV, we have the nature of the
seabed for 13 tiles to the right of the side-scan sonar
and for the 13 tiles to the left of the side-scan sonar.
Each tile is characterized by the nature of the seabed
(from 4 classes: silt (class 1), sand (class 2), gravel
(class 3) and rock (class 4)), the size, the position in
terms of longitude and latitude, the bathymetry, the
performance of the sonar at this position, and by the
coverage of the sonar (cf. Figure 4). We associated
an imprecision to each measure; for example, we have
imprecise longitude and latitude of each tile. Figure 5
gives seabed for an example of two AUV missions and
the corresponding simulated seabed. Each tile is of size
10 m × 10 m. The performance of the sonar is binary
(1 for a good reliability and 0 for a poor one). The
coverage is also a binary number: a value equal to 0
means that we have no information about the seabed
of the tile (represented by a red color in Figure 5). We
can note a difference of simulated seabed between the
mission 1 and the mission 2. Indeed, the mission 2 was
conducted later than the mission 1, and the sand and
silt move and free up a rock area.

3.2 Estimation of mass functions

We give here the mass functions used for data described
in Section 3.1. As noted before, each measure is associ-
ated with imprecision that we will use in the mass func-
tions modeling. A value of the coverage equal to 0 shows
that the nature of the seabed may be silt or sand. So we
can discount the mass associated to the silt class (class
1) by: m′(C1) = β1m(C1) and the associated mass with
the sand class (class 2) by: m′(C2) = β2m(C2) and the
ignorance by m′(Θ) = 1 − β1 − β2 + (β1 + β2)m(Θ).
Where β1 and β2 are two real chosen between 0 and 1.
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Figure 4: Tiles to the left and to the right of the sonar
and informations of each tile

1st mission 2nd mission

Figure 5: Simulated and measured seabed for two AUV
missions (red: seabed without information, green: silt,
blue: sand, magenta: gravel and black: rock)

The performance of the sonar controls the reliability of
the source (view). The mass in this case is updated us-
ing: m′(Cq) = β3m(Cq) and m′(Θ) = 1−β3 +β3m(Θ).

Here we give the steps used to calculate the mass
functions for a given tile x0. Firstly, we enlarge each
tile with its longitude and latitude imprecision, we look
then for tiles xε

i that intersect with the tile x0. Finally,
we use the Equation (3) to compute the mass functions
considering only tiles that intersect with x0. Figure 6
illustrates how to find the tiles used for combination for
a given tile x0. In this example, the tile xj , enlarged
using its longitude and latitude imprecisions, intersects
with the tile x0, however, the tile xi does not intersect
with x0 and thus it is not used for the fusion. The vote
approach uses the number of tiles that intersect with x0

for each class. It does not take into account the distance
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between tiles in contrast to the belief approaches, where
the distance is taken into account.

!"

!#

!$

!"#%

Longitude#imprecision

$/)()*+,#imprecision

!"#%

Figure 6: The use of imprecision to find tiles to combine

3.3 Results

We give in this section results for seabed recognition
using multi-view belief fusion. We use model 1 and
model 2 for multi-view fusion described in section 2.1.
The model 1 based approach uses the confusion matrix
given by Equation (12) to calculate the mass functions.
This confusion matrix is specific to the classifier of the
AUV, used to generate the data.









88.18 11.81 0.01 0.00
10.56 78.87 10.56 0.01
0.01 10.56 78.87 10.56
0.00 0.01 11.81 88.18









(12)

The parameters used by the model 2 based approach
are given by: β1 = 0.7, β2 = 0.3 and β3 = 0.4. The
value of ε (for both models) is equal to the tile size
(10 m in our example). These parameters are tuned
manually. We give in Figure 7 results found by dis-
tance based model approach, confusion matrix based
approach and the vote approach. Table 1 gives the as-
sociated confusion matrices (CM) and recognition rates
(RR). The final maps, of the explored area, are repre-
sented in Figure 8.

The first row in Figure 7 represents the expected
seabed of each tile. The second row gives the seabed
points found after the AUV simulated mission; we can
observe the overlapping between classes that gives an
idea about the difficulty of the problem. The last three
rows give, respectively, the distributions of seabed tiles
using belief fusion models (model 1, model 2 ) and the
vote approach. The model 2 approach and the vote ap-
proach give a good recognition of seabed, indeed, the
classes are well separated in contrast to model 1 ap-
proach where class 1 (silt), class 2 (sand) and class 3
(gravel) are overlapped.

The numerical results, in terms of confusion matrices
(CM ) and recognition rate (RR) represented in Table 1,

show the significant gain using fusion approaches. In-
deed, we obtained a high recognition rate (93.29%) with
the model 1 approach compared to that found without
fusion (54.32%). The model 2 based approach gives also
a best recognition rate (92.19%). The vote approach
gives a recognition rate of 90.93% small than these
found with belief approaches. In terms of confusion
matrices, the model 1 approach gives the best recog-
nition rate of class 2 (the majority class in this study)
and class 3. However, the vote approach gives the best
recognition rates for class 1 (silt) and class 4 (gravel).
The CPU time used by the model 2 based approach is
about 183.86 seconds for 35880 tiles (a mean of about
5.1 ms to compute the class of a single tile). The vote
approach gives the best CPU time with 65.82 seconds
and the model 1 approach gives the worst CPU time
with 1,008.5 seconds. We note that the time changes
from a tile to another which depends on the number of
neighborhood tiles used in the combination.

Approach RR (%) CM (%)

Before 54.32







64.34 30.38 4.62 0.66

20.29 55.31 20.56 3.84

6.31 30.97 49.80 12.92

0.33 6.86 33.66 59.15







Model 1 93.29







89.27 10.73 0.00 0.00

2.10 97.64 0.26 0.00

0.00 20.50 79.50 0.00

0.00 0.00 56.54 43.46







Model 2 92.19







94.80 5.20 0 0

3.30 96.24 0.45 0

0 24.64 75.22 0.14

0 0 56.21 43.79







Vote 90.93







99.92 0.08 0 0

7.32 92.41 0.27 0

0 21.76 78.12 0.12

0 0 20.91 79.09







Table 1: Belief fusion performance using model 1 and
model 2

We have done fusion for the second mission, we give
in Figure 9 the final maps found by the different ap-
proaches and in Table 2 the associated recognition rates
and confusion matrices. The final maps show the im-
provement of seabed recognition using model 1 and
model 2 approaches.

Here again, the model 1 belief approach gives the
best recognition rate (92.33%) followed by the model
1 approach. The weighted voting approach gives the
small recognition rate with 88.01%.

Figure 10 shows the maximum of belief and the igno-
rance for the AUV missions using the model 2 approach.
We note that the maximum of belief is small for tiles
on the boundaries between two different seabeds. More-
over the ignorance is important in these locations and
is low in homogeneous seabed areas. We note also that
the ignorance and the maximum of belief is too small
for the external tiles (limits of the explored area), this
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Figure 7: Belief fusion results using model 1, model 2 and vote approaches (red: seabed without information,
green: silt, blue: sand, magenta: gravel and black: rock. Row 1: simulated seabed, row 2: measured seabed, row
3: model 1 seabed, row 4: model 2 seabed and row 5: vote seabed)

Approach RR (%) CM (%)

Before 54.46







65.95 29.09 4.30 0.66

22.44 54.01 19.77 3.78

5.34 27.44 52.37 14.85

0.59 5.19 29.91 64.30







Model 1 92.33







97.33 2.67 0.00 0.00

4.46 95.38 0.16 0.00

0.00 12.68 87.26 0.07

0.00 0.00 25.66 74.34







Model 2 90.08







97.97 2.03 0 0

8.52 90.60 0.88 0

0 13.37 85.76 0.87

0 0 18.55 81.45







Vote 88.01







100 0 0 0

15.22 84.33 0.45 0

0 13.39 85.35 1.27

0 0 5.62 94.38







Table 2: Belief fusion performance, for the second mis-
sion, using model 1 and model 2

can be explained by the use of small number of tiles for
fusion. For application these kind of maps is interesting
to plan other missions.

Until now, we used the fusion of single mission inde-
pendently to the other missions. The use of multiple
missions can improve seabed recognition if the ground
truth does not change over time which is not the case for
areas of sand or silt (we can see the difference between
the two missions used in this paper). Figure 11 gives
the final map of the fusion of the two missions, using
the model 2 belief approach by discounting the calcu-
lated masses over tiles of the first mission, and the cor-
responding maximum of belief and the ignorance. The
recognition rate is 89.01% which is smaller than that
found using a single mission. This can be explained
by the variation of the simulated ground truth between
both missions. The confusion matrix is given by:









95.97 4.03 0 0
7.19 92.53 0.28 0

0 17.76 81.39 0.85
0 0 24.56 75.44









(13)
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Simulated map Model 1 map

Model 2 map Vote map

Figure 8: Final maps using belief and vote approaches
for the first mission

Simulated map Model 1 map

Model 2 map Vote map

Figure 9: Final maps using belief and vote approaches
for the second mission

We note that the recognition rate of the sand class
has been enhanced in contrast to the other classes where
the single mission gives the best recognition. The maxi-
mum of belief shows the border between areas of seabed
and the ignorance is high for all tiles except tiles of the
limits of the explored area.

1st mission 2nd mission

Figure 10: Maximum of belief and the ignorance for the
two AUV missions

Last simulated map Model 2 map fusion

Maximum of belief The ignorance

Figure 11: Final map of the fusion of the two missions
and the associated maximum of belief and the ignorance

4 Conclusions

In this paper, we studied the contribution of the use
of multi-view fusion to improve seabed recognition. In-
deed, areas swept by an AUV can be overlapped: a
single zone can be viewed more than one time. We
combine then information (seabed found by the AUV)
from different viewpoints to improve the quality of the
map (seabed of the explored area). The belief ap-
proaches used here have led to a significant improve-
ment of recognition rate for multi-view seabed recog-
nition compared to voting approach. Indeed we have
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obtained recognition rates (93% for the first mission
and 92% for the second mission) greater than the ob-
tained rates using only one view (around 54% for both
missions). The confusion matrix based model gives the
best recognition rate compared to the distance based
model and to the classical vote approach. The belief
approach allows the drawing of the ignorance and the
maximum of belief maps. We have shown that the over-
all recognition rate for the fusion of both missions is
small in comparison to the results of a single mission.
This can be explained by the fact that the ground truth
has changed. Thus, the use of multiple missions de-
pends on the interval time between missions and the
nature of the studied area. We note that these results
are preliminary and further work on this subject re-
mains.
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