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Abstract— In this paper, we present a new method for di-
mensionality reduction, called supervised Curvilinear Component
Analysis, for the classification of sonar images task using support
vector machines. Indeed it is important in many underwater
applications to get tools that give automatically the kind of sedi-
ments. This method derives from the known method Curvilinear
Component Analysis. It gives good results for data not highly
overlapped. We have used this method after a feature extraction
step based on wavelet decomposition applied to our sonar images
database.

I. INTRODUCTION

The sonar imaging is one of the advanced methods for data
acquisition about of sea floor. Detecting a kind of sediment
can be important. For example the rocks can be used as
land-marks for images registration being used for underwater
navigation, or for the creation of underwater map used by the
sedimentologists. A skilled expert can interpret the images
of the surveyed area and produce a base map showing the
distribution of different classes of sediments.

To perform the sonar images classification, we adopt the
Knowledge Discovery on Database (KDD) process as shown
in Fig. 1. There are four principal steps for the KDD process,
given a database, the preprocessing step gives us sonar images
which represented by the grey level of the pixels in the image
that correspond to the acoustic reflectance. Then we do a
feature extraction to extract the relevant features. In most
cases, we have to reduce the number of extracted features, that
is the dimensionality reduction step which is the purpose of
this paper. The dimensionality reduction allows us to perform
the classification task in a low dimensional space: that is the
last step for the KDD process.

There are different methods cited in [1] of feature extraction
for image processing. These methods are quite similar, here
the wavelet decomposition is choosen.

Classification step has been also studied in our previous
works [2], [3], [4]. We propose here the use of a supervised

Fig. 1. The process KDD for sonar images classification.

classification: the Support Vector Machines (SVM). This ap-
proach has proved its performance in the case of nonlinear
data.

In a previous paper [3] we have studied the problem of
dimensionality reduction by features selection using genetic al-
gorithms, that means keep the best previous extracted features
considering that genetic algorithms use a feedback between
the classification task and the selection. This method aims
finding these best features while maximizing the classification
rate. Here, we want to reduce the dimension while keeping
the maximum of information. Most common methods try to
conserve inertias of data by the variations. Most of these
methods are linear such as principal component analysis
(PCA) which is unsupervised and linear discriminant analysis
(LDA) which is supervised. Here, a nonlinear dimensional-
ity reduction method called Curvilinear Component Analysis
(CCA, [5]) is considered in order to reduce the dimension of
data, as shown in [2]. CCA reduces the time elapsed during
the classification but it can not give a better classification
rate because it does not take into account the class of points.



It is why we have tried to extend the concept of CCA to
multiple manifolds or classes, each representing data of one
specific class, a supervised variants of CCA is proposed for
dimensionality reduction and to increase the classification rate.
In this paper, a framework unifying the unsupervised and
supervised methods is given. Supervised CCA is then applied
to an artificial database and then on our sonar images database
and is shown to be useful for high-dimensional data with
a clear manifold structure where the classes are not highly
overlapped.

We present the principle of CCA and the proposed su-
pervised CCA in section II. In section III we present the
classification step based on SVM. Finally, in section IV, ex-
perimental results of classification following the KDD process
are proposed on generated data and on a real sonar images
database where the feature extraction based on wavelet is
recalled.

II. CURVILINEAR COMPONENT ANALYSIS FRAMEWORK

A. CCA

The distance between various points of a set of individuals
plays a significant role in classification. Thus, preserving the
same topology of the input data in a low-dimension space will
enable to gain in time of classification.

To deal with the problem of high-dimensional space in
classification task, we use dimensionality reduction methods.
Here, we introduce CCA a nonlinear dimensionality reduction
method. It consists to preserve the local topology on the
contrary of the PCA which is a linear method which seeks
to maximize the standard deviation. CCA has been already
presented in a number of works [5], [2]: CCA takes a set
of N D-dimensional vectors (xi) as input and maps them
to a set of N M -dimensional, (yi) vectors where the yi

corresponds to xi and M << D, while preserving the local
topology. In the CCA, the topology is defined by the distances
between all pairs of vectors of original data. Since the topology
cannot be entirely reproduced in the projection subspace,
which has a lower dimension than the original subspace, the
local topology, the most important, is favored to the detriment
of the global topology. The goal of CCA is then to minimize an
error function which characterizes the difference of topology
between the original subspace (xi) and the projection subspace
(yi):

E =
1
2

n∑

i=1

n∑

j �=i

(Xij − Yij)2Fλ(Yij). (1)

with: Xij : represent the euclidean distance between the inputs
xi and xj in IRD.
Yij : euclidean distance, between the projections yi and yj of
the inputs xi and xj in the projection subspace IRM .
F : IR+ → [0, 1] is a decreasing function of its argument, so
it is used to favor local topology preservation. For example,
F could be a step, exponential or sigmoı̈d function of Yij .

To get the outputs yi a random point yi is choosen, and all

the yj �=i are moved with respect to yi with the rule:

∀j �= i ∆yj = α(t)fλ(Yij)(Xij − Yij)
yj − yi

Yij
, (2)

where α(t) is an adaptive factor that evolves with time, the
complexity is in O(N). CCA allows a reduction of size with-
out decreasing classification performances. In the following
section we introduce supervised CCA in order to reduce the
dimensionality and increase classification rates.

B. Supervised CCA

We introduced the notion of Supervised CCA to treat data
knowing the class of each individual and so outperforms the
classification rates. We search to preserve the local topology
knowing the class of each point, on the contrary of LDA,
that is a linear method where we maximize the covariance
between-class and minimize the covariance within-class.

Consequently we have modified the CCA algorithm to take
into account the class of individuals, thus the algorithm of
the supervised CCA will be as follow:
suppose that we have to represent variables xi ∈ IRD (the
inputs) with variables yi ∈ IRM (the outputs).
The new algorithm is given by:

Initialization of yi

Initialization t = 0
For each t
˜ Evaluate α(t) and λ(t)
˜ For each individuals yi

˜ ∆yj = α(t)Fλ(t)(Yij)(Xij − kYij)
yj−yi

kYij

˜ with j �= i and Class(xi)=Class(xj)
˜ End For
End For

The k used controls the level of regrouping of the individuals
of each class. In this approach, for each yi, one moves yj

such as i �= j and yi, yj belong to the same class. The
problem is how to represent new vectors which are not with
the xi used. For that, being given a new vector x0, to find
the y0, we will minimize the following error by using the
gradient descent method:

E0 =
1
2

∑

i

∑

j �=i

(X0j − X0j)2fλ(Y0j). (3)

Thus, instead of moving each vector with respect to each other,
only one point is adapted according to a simple stochastic
gradient descent, while all the others are kept fixed. Therefore,
this point is searched with respect to the outputs yi with respect
to the measured distances Xi0. It is actually a local mapping
and the initialization of y0 is made randomly.

III. SUPPORT VECTOR MACHINES

In the classification task, the images are analyzed in order to
be separated. This process uses some features of the images to
differentiate every one from the others. This way, the images
can be classified in several classes with some characteristic



in common. Then the classification of sediments can be done
using anyone of well-known classification techniques. One of
them is a supervised method called SVM given a simple way
to obtain good classification results with a reduced knowledge.
So, the used classification is based on the SVMs classification
algorithm. The principle of SVMs has been developed by
Vapnik [6] and used in several applications [4], [7]. The
classification task is reduced to find a decision border dividing
the data into groups representing the separated classes. The
simplest decision case is when the data can be divided into
two groups. Consider the problem where the vectors can be
divided into two sets. We must find the optimal decision border
that separates these two sets of images. This optimal election
will be the one that maximizes the distance from the border
to the data. In the two dimensional case, the border will be
a line, and in a multidimensional space the border will be an
hyperplane (cf Fig. 2). The searched decision function is given
by:

f(x) =
l∑

i=1

αiyi < xi, x > +b. (4)

Fig. 2. An separate hyperplane for two classes in 3 dimension.

The y values of this expression are +1 for positive classifi-
cation training vectors (representing one class) and -1 for the
negative training vectors (representing the other class). Also,
the inner product is performed between each training input
and the vector which must be classified. Thus, we need a
set of training data (x, y) in order to find the classification
function. The values αi are the Lagrange multipliers, b a
constant value obtained by the minimization process and l
the number of vectors in the training database. These vectors
with a value different to zero, are known as support vectors.
In our case, x represents one image from the sonar images
training database (in the space of features) and y represents
the predicted kind of sediment present on the x image. The
(xi, yi) represents the images of the training database and
there associated kind of sediments. When data are not linearly
separable this scheme cannot be used directly. To avoid this
problem, the SVMs map the input data into a high dimensional
features space. The SVM constructs an optimal hyperplane in
the high dimensional space and then returns to the original
space transforming this hyperplane in a nonlinear decision

border. The nonlinear expression for the classification function
is given in the following equation:

f(x) =
l∑

i=1

αiyiK(xi, x) + b, (5)

where K is the kernel that performs the nonlinear mapping.
The choice of this nonlinear mapping function or kernel is very
important in order to obtain good classification performance.
But, there are no method to do this choice. The first kernel
investigated were the following:

• Linear K(x, y) =< x, y >,
• Polynomial K(x, y) = (< x, y > +1)p),
• Gaussian K(x, y) = exp(−γ(x − y)2), where γ is a

parameter that will be tuned by the user.

When some data into the sets cannot be separated, the SVM
can include a penalty term, C, in the minimization problem,
which makes more or less important the misclassification. The
greater is this parameter, the more important is the misclas-
sification error into the minimization procedure if classes are
not overlapped.

This approach can be generalized to more then two classes
[8], [9] where we can quote different methods:

• The direct approach, where we considered directly all the
classes,

• One-vs-rest: we made a classifier for each two classes,
and then we fuse the results,

• One-vs-one: we seek to separate each class from the
others, and then we fuse the results,

The direct approach is a straightforward generalization of the
support vector concept to more than two classes. The pairwise
one-vs-one method conserves most of the maximal margin
hyperplanes, but the simple one-vs-rest scheme coincides
only in single points with the constructed optimal separating
hyperplanes. It is why we prefer the one-vs-one approach.

IV. EXPERIMENTS

The SVM classifier used on our experiments is libsvm
given in [10]. This algorithm use the one-vs-one multi-class
approach. The SVM classifier was trained using the training
database. We made our experiments on two databases, an
artificial one and a real one from sonar images.

A. Artificial data

The first example is a 1000-points synthetic dataset of 6
gaussians in 15-dim with covariances σ2

1 = σ2
2 = σ2

3 = σ2
4 =

σ2
5 = σ2

6 = 0.25 and means are choosed in order to obtain
quite separated classes, see Fig. 3. To visualize the data points,
we have projected them to the two first components, using
PCA, which gives the representation with maximum variation.

We have divided the artificial data into two equitable
databases, one for learning task and the other one for testing.
Thus, each class of the learning database contains 500 15-
dimensional points. For tests, we have used a linear kernel, this
kernel gives best results in such data, for SVM classification
with C = 1 the default value of libsvm classifier. We have



used 5 as dimension of the output dimension of both CCA
and supervised CCA (D = 15 and M = 5) in order to get
the same dimension as in our sonar images database tests. The
results of SVM classification are shown in Table I, II and III.
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Fig. 3. Three Gaussian clusters in 15-dim space. Data points are shown in
the first 2 PCA components.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
Class 1 481 10 3 3 1 2
Class 2 40 459 1 0 0 0
Class 3 41 3 456 0 0 0
Class 4 13 0 0 481 2 4
Class 5 6 4 5 5 485 0
Class 6 37 0 0 4 0 459

TABLE I

CONFUSION MATRIX FOR ARTIFICIAL DATA WITHOUT DIMENSIONALITY

REDUCTION (CLASSIFICATION RATE = 94.03%)

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
Class 1 368 75 37 7 2 11
Class 2 5 493 2 0 0 0
Class 3 1 2 497 7 0 0
Class 4 3 0 0 483 3 11
Class 5 0 0 13 7 480 0
Class 6 6 0 0 3 0 491

TABLE II

CONFUSION MATRIX FOR ARTIFICIAL DATA AFTER CCA

(CLASSIFICATION RATE = 93.73%)

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
Class 1 444 27 17 6 1 5
Class 2 16 482 1 0 1 0
Class 3 14 3 493 0 0 0
Class 4 2 0 0 489 2 7
Class 5 0 3 0 4 493 0
Class 6 11 0 0 3 0 486

TABLE III

CONFUSION MATRIX FOR ARTIFICIAL DATA AFTER SUPERVISED CCA

FEATURE EXTRACTION (CLASSIFICATION RATE = 96.23%)

The classification rates are given by the number of well
classified points divided by the number of points of test
database.

The classification rate obtained with CCA is 93.73% and
without CCA we have 94.03% of points well classified with a
confidence interval (at 5%) of [93.18%, 94.88%]. So we note
that CCA does not decrease significantly the performance and
gives time reduction.

The dimensionality reduction based on supervised CCA
gives a classification rate of 96.23%. Morever the confidence
interval of CCA is [92.86%, 94.60%]. Hence the supervised
CCA based classification outperforms significantly the CCA-
based classification and the classification without dimension-
ality reduction. Supervised CCA gives also time reduction.

We define a global error rate for a given class i ∈ [1, 6]
by the number of points from class i which are classified in
another class plus the number of points from other classes
which are classified in the class i divided by the total number
of points. So we obtain a global error rate of 5.20% for the
class 1 and a global error rate between 2.77% and 0.63% for
the other classes. The class 1 is more overlapped with the
other classes than the others (as shown in the Figure 3) that
explains this error rate.

So supervised CCA outperforms the time reduction and
classification rate. But the classification rate can decrease for
overlapped classes.

B. Sonar images data

1) The original database: The second database is a real
sonar images database which we carried out. It consists of
26 sonar images provided by GESMA (Groupe d’Etude Sous
Marine de l’Atlantique) (cf. Fig. 4 for an example of that
image) cuted to 4249 small-images of size 64× 64, on which
the kind of sediments is indicated (sand, rock, cobbles, ripple
and silt), or the non existence of information when there is
a shaded zone. Moreover several sediments can appear on a
same image, which we call patch-worked small-images (cf.
small-images 4 and 6 on Tab. IV).

Notice that such database is quite difficult to realize. Indeed,
the expert has a subjective experience, and he can make mis-
takes on some small-images, even if he has a perception of the
global sonar image. So we only have a subjective perception
of reality. The Table V presents effective of the training (Tr.
DB.) and tests (Ts. DB.) database obtained randomly in order
to get 1/3 of data for training part and 2/3 of data for test part.

2) Feature extraction based on wavelet decomposition:
In order to extract relevant information in the sonar images
according to the KDD process (see Fig. 1), many features
extraction approach can be considered [1]. Here, we have used
the discrete translation invariant wavelet transform. It is based
on the choice of the optimal translation for each decomposition
level. Each decomposition level d gives four new images. We
choose here a decomposition level d = 2. For each image
Ii
d (the ith image of the decomposition d) we calculate three



Fig. 4. Example of sonar image (provided by GESMA group).

1. Sand 2. Ripple 3. Rock

4. Rock & Sand 5. Cobbles 6. Ripple & Sand

TABLE IV

EXAMPLE OF SMALL IMAGES

parameters. The energy is given by:

1
HL

H∑

n=1

L∑

m=1

Ii
d(n,m), (6)

where H and L are respectively the number of pixels on the
rows, and on the columns. The entropy is estimated by:

− 1
HL

H∑

n=1

L∑

m=1

Ii
d(n,m) ln(Ii

d(n,m)), (7)

and the mean is given by:

1
HL

H∑

n=1

L∑

m=1

|Ii
d(n,m)| (8)

So we obtain 15 features. Each small-image is then represented
in a 15-dimension space.

Sand Rock Shadow Ripple Silt Cobbles Total
Tr. DB 971 319 79 147 23 18 1557
Ts. DB 1350 596 293 227 211 15 2692

TABLE V

TRAINING AND TEST DATABASE EFFECTIVE.

3) Results: On the Table VI, we present the obtained
effective of each kind of sediment after the tests made on our
test database without dimensionality reduction. Experiments
are made on the sonar image database after a wavelet de-
composition, the features dimension is 15 (D = 15) an the
output dimension is 5. In all experiments, we have used a
SVM classifier with gaussian kernel with γ = 0.0404 and
C = 100, parameters that gives the best classification rates.

We have obtained a global classification rate of 67.57%
defined as the number of good classified small-images on the
total of small images. Notice that no cobbles small-images are
detected. 1122 of 1350 (83.11%) of the sand small-images are
detected, 73.32% of the rock small-images are well classified
and 51.53% of the shadow small-images are detected. We
note a low rate of detection for the two sediments, silt and
ripple; indeed, only 43.80% (respectively 13.27%) of the ripple
(respectively silt) small-images are detected. The classifier
tends to classify all the images in the two classes, sand and
rock small-images, both majority classes of the database in
terms of effective. Before training the classifier, we apply CCA

References
Class name Sand Rock Shadow Ripple Silt Cobbles
Sand 1122 108 101 9 10 0
Rock 51 437 80 20 8 0
Shadow 124 17 151 1 0 0

Te
st

Ripple 98 42 8 79 0 0
Silt 53 42 88 0 28 0
Cobbles 10 5 0 0 0 0

TABLE VI

CONFUSION MATRIX FOR SONAR IMAGES DATA WITHOUT

DIMENSIONALITY REDUCTION (CLASSIFICATION RATE 67.57%)

for dimensionality reduction, classification results are shown
on the Table VII We have obtained a global classification rate
of 53.42%. 84.75% of sand small-images are well classified a
rate rather than on the rough data, and 44.29% of rock small-
images are detected. No cobbles, silt and ripple small-images
are detected. We obtained a classification rate of 11.26% for
shadow small-images. Thus, we have obtained a classification
rate less than the classification rate obtained on our sonar
database without dimensionality reduction. On the Table VIII
we give results after applying supervised CCA on the sonar
image database. We obtained a classification rate of 48.55%,
a rate lower than the classification rate obtained by applying
SVM on our rough database. One gained in computing time
but one lost on the classification rate; theses results can be
explained by the fact that the six classes of our sonar database
are highly overlapped and the classes are unbalanced.



References
Class name Sand Rock Shadow Ripple Silt Cobbles
Sand 1141 149 60 0 0 0
Rock 264 264 68 0 0 0
Shadow 243 17 33 0 0 0

Te
st

Ripple 176 51 0 0 0 0
Silt 25 91 95 0 0 0
Cobbles 11 4 0 0 0 0

TABLE VII

CONFUSION MATRIX FOR SONAR IMAGES DATA AFTER CCA

(CLASSIFICATION RATE 53.42%)

References
Class name Sand Rock Shadow Ripple Silt Cobbles
Sand 1080 121 0 145 2 2
Rock 281 192 0 112 0 11
Shadow 244 45 0 4 0 0

Te
st

Ripple 173 21 0 33 0 0
Silt 20 149 0 28 2 12
Cobbles 11 1 0 3 0 0

TABLE VIII

CONFUSION MATRIX FOR SONAR IMAGES DATA AFTER APPLYING

SUPERVISED CCA (CLASSIFICATION RATE 48.55%)

Note that with supervised CCA we detect some ripple, silt
and cobbles small-images, but no shadow small-images, on
the contrary of the CCA.

V. CONCLUSION

The dimensionality reduction is a necessary preprocessing
step for classification of sonar images data following the
KDD process. In this paper, we have presented and used a
new method for dimensionality reduction in the context of
sediment classification. We have shown that the application of
supervised CCA gives better results in the artificial data used
for experiments. However results are not so concluding on our
real sonar images database. We can explain this difference by
the fact that the classes are highly overlapped and unbalanced.

In our experiments, we have used an heuristic value of the
output space of supervised CCA, further works will focus on
adding an automatic tuning of this parameter by searching
the intrinsic dimension, the small dimension where we can
represent data without lose of information.

The data used for our test are unbalanced, a thing that have
a negative effect in classification task as shown in experiments
part.

Another problem is the patch-worked small-images. We are
working on the realization of a new repartition of the data
with a previous manual segmentation of the sediment.
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