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Abstract Data in most of the real world applications like sonar images clas-
sification are high dimensional and learning algorithms like Support Vector Ma-
chines (SVMs) have problems in handling high dimensional data. Here, we
show that a non-linear projection method called curvilinear component analysis
can effectively reduce the original dimension to a lower dimension. We apply
this approach for dimensionality reduction of the sonar images and use SVMs
classifiers for sediments classification.

1 introduction

In many real-world classification problems, high-dimensional data sets are col-
lected, e.g. from sensors. For example, the images collected by a sonar are
particularly hight-dimensional and difficult to characterize. It can be important
to detect a specific kind of sediment, for example the rocks can be used as land-
marks for images registration being used for underwater navigation. Often, the
ideal decision border between different classes in such sets is highly non-linear.
A classifier should therefore have many degrees of freedom, and consequently a
large number of parameters. As a result, training a classifier on such data sets
is quite complicated: a large number of parameters has to be estimated using a
limited number of samples.

One can overcome this problem by first mapping the data to a high-dimensional
space in which the classes become (approximately) linearly separable. Kernel-
based techniques, such as SVMs, are typical examples of this approach. An al-
ternative is to lower the data dimensionality, rather than increase it. Although
it might seem information is lost, the reduction in the number of parameters
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one needs to estimate can result in better performance. Many linear methods
for performing dimensionality reduction, such as principal component analysis
(PCA) and linear discriminant analysis (LDA) are well-established in literature.
Here, a non-linear dimensionality reduction method called curvilinear compo-
nent analysis (CCA, [1]) is considered. The main assumption behind CCA is
that the data set is sampled from a (possibly non-linear) manifold, embedded in
the high-dimensional space. CCA is an unsupervised method and brings some
improvements to Sammon’s mapping [2]. Actually, when unfolding a non-linear
structure, Sammon’s mapping cannot reproduce all distances. One way to face
this problem consists in favoring local topology: CCA tries to reproduce short
distances firstly, long distances being secondary. We present the principle of this
method in section 2, SVMs and experimental results are presented, respectively,
in section 3 and section 4.

2 General framework of curvilinear component

analysis

This section introduce CCA by explaining the basic idea of this method. Al-
though CCA has been already presented in a number of works [1]: CCA takes a
set of high-dimensional data and maps them into a low-dimensional space while
preserving local topology structure of the data. In the CCA, the topology is
defined by the distances between all pairs of vectors of original data. Since the
topology cannot be entirely reproduced in the projection subspace, witch has
a lower dimension than the original subspace, the local topology, the most im-
portant, is favored to the detriment of the global topology. The goal of CCA is
then to minimize an error function witch characterizes the difference of topology
between the original subspace (the space of sonar images xi) and the projection
subspace (yi):

E =
1

2

∑

i

∑

j 6=i

(Xij − Yij)
2Fλ(Yij). (1)

with: Xij : represent the euclidian distance between the sonar images xi and xj .
Yij : euclidean distance between the projections yi and yj of the sonar

images xi and xj in the projection subspace IRd with d its dimension.
Fλ : IR+ → [0, 1] is a decreasing function of its argument, so it is used to favor
local topology preservation. For example, Fλ could be a step, exponential or
sigmoid function of Yij . We use the first function because it takes just two
values 0 or 1.

The gradient of E is given by the equation 2:

∇iE =
∑

j 6=i

Xij − Yij

Yij

[2Fλ(Yij) − (Xij − Yij)F
′

λ(Yij)](yj − yi), (2)

with ∇iE denotes the gradient of E with respect to yi.
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A minimization of E by gradient descent gives the adaptation rule:

∆yi = α(t)
∑

j 6=i

Xij − Yij

Yij

[2Fλ(Yij) − (Xij − Yij)F
′

λ(Yij)](yj − yi). (3)

where α(t) is an adaptation factor that evolves with time.
this rule has several defects:

• for each i, we will calculate a sum over all the j, thus the complexity is
O(N2), with N the dimension of the feature space.

• the process can fall into a local minimum of E.

A simple procedure to avoid these defects consists in choosing a random point
yi, and all the yj 6=i are moved with respect to yi. The new adaptation rule is
given by (method of the modified gradient):

∀j 6= i ∆yj = α(t)Fλ(Yij)(Xij − Yij)
yj − yi

Yij

. (4)

the complexity is only in O(N) instead of O(N2).
We find several applications of the CCA, for example [6] used this method

for the reduction of the dimensionality for the detection of the person gender
using faces. We find another application in the representation of the phonemes
in [1].

3 SVMs classification

In classification task, the different images are separated in order to analyze the
information in some way the information that contains. This process uses some
characteristics of the images to differentiate every one from the others. This
way the images can be classified in several classes with some characteristic in
common. The classification is a task where every images is classified or labeled
into several groups.

Then the classification of sediments can be done using anyone of well-known
classification techniques. One of theses techniques is the SVMs that give us a
simple way to obtain good classification results with a reduced knowledge of
the problem. The principles of SVMs have been developed by Vapnik [4] and
have been presented in several works like [3]. The classification task is reduced
to find a decision border that divide the data into the groups that we want to
separate. The simplest decision case is when the data can be divided into two
groups. The work presented here is based on the SVMs classification algorithm
presented in [5].

Bases of Support Vector Machines In the simplest decision problem we
have a number of vectors divided into two sets, and we must find the optimal
decision border to divide these sets. This optimal election will be the one that
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maximizes the distance from the border to the data. In the two dimensional
case, the border will be a line, in a multidimensional space the border will be
an hyperplane. The searched decision function has the next form:

f(x) =

l∑

i=1

αiyi < xi, x > +b. (5)

The y values that appear into this expression are +1 for positive classifica-
tion training vectors and -1 for the negative training vectors. Also, the inner
product is performed between each training input and the vector that must
be classified. Thus, we need a set of training data (x,y) in order to find the
classification function. The values α are the Lagrange multipliers obtained in
the minimization process and the l value will be the number of vectors that in
the training process contribute to form the decision border. These vectors are
those with a value not equal to zero and are known as support vectors. On our
case, the x represents one image from the sonar images training database and y

represents the predicted kind of sediment present on the x image. The (xi, yi)
represent the images of the training database and there kind of sediments.

When the data are not linearly separable this scheme can not be used di-
rectly. To avoid this problem, the SVMs can map the input data into a high
dimensional feature space. The SVMs constructs an optimal hyperplane in the
high dimensional space and then returns to the original space transforming this
hyperplane in a non-linear decision border. The non-linear expression for the
classification function is given in (6) where K is the kernel that performs the
non-linear mapping.

f(x) =
l∑

i=1

αiyiK(xi, x) + b. (6)

The choice of this non-linear mapping function or kernel is very important
in the performance of the SVMs. One kernel used in our previous work is the
radial basis function. This function has the expression given in (7).

K(x, y) = exp(−γ(x − y)2). (7)

where γ is a parameter that will be tuned by the user.
When some data into the sets can not be separated, the SVMs can include

a penalty term in the minimization, that makes more or less important the
misclassification.The greater is this parameter the more important is the mis-
classification error into the minimization procedure.

4 Experiments

4.1 The database

We seek in this article to classify sediments using a sonar images database which
we carried out. It consists of 26 sonar images provided by GESMA (cf. Fig.
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1 for an example of that images) cut to 4249 small-images of size 64x64, on
which we indicated the kind of sediments (sand, rock, cobbles, ripple, silt and
shadow), or the non existence of information when there is a zone in the shade.
Moreover several sediments can appear on a same image, which we informed by
the existence of a border or not (cf. Fig. 2).

Figure 1: Example of sonar image (provided by GESMA).

Thus, the knowledge discovery using such data is very important for the
expert. The approach employed to solve the problem of classification of marines
sediments is based on the method of Support Vector Machines (SVM) [3]. On
the table 2 we represent some information about our database where B. A. (resp.
B. T.) represents training (resp. test) database.

4.2 Application of SVM on the rough data

We have trained our SVM classifier using the training database (B.A.) without
any processing, we have used a gaussian kernel. On the table 3 we present
some results that we obtained after the tests that we made on our test database
(B.T.)

We have obtained a classification rate of 61.74%, we note that no cobbles
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Sand Ripple Rock

Sand & Rock Silt Ripple with border

Table 1: Example of different kind of small-images.

Rock Cobbles Sand Ripple Silt Shadow Total

B.A 319 18 971 147 23 79 1557
B.T 596 15 1350 227 211 293 2692
B.A. et Fr 153 16 291 94 15 14 583
B.T. et Fr 266 12 472 136 67 151 1104

Table 2: Manual segmentation of our database.

References
Class name Rock Cobbles Sand Ripple Silt Shadow
Rock 372 0 165 46 1 12
Cobbles 3 0 11 1 0 0
Sand 169 0 1099 15 8 59

T
es

ts

Ripple 67 0 144 15 0 1
Silt 170 0 30 5 6 0
Shadow 49 0 73 0 1 170

Table 3: Confusion matrix for the rough sonar data (best classification rate is
61.74%)

image is detected. 1099 of 1350 (81.40%) of the sand images are detected,
62.41% of the rock images are well classified and 58.02% of the shade images
are detected, we note a low rate of detection for the two sediments, silt and
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ripple, indeed, only 6.60% (resp. 2.84%) of the ripple images (resp. silt) are
detected. The classifier tends to classify all the images in the two classes, sand
images and rock images. the two majority classes of the database.

4.3 Application of SVM after the application of CCA

Before training the classifier, we reduced the dimension of our data by applying
the CCA with a dimension of 5. The table 4 represents the obtained results.

References
Class name Rock Cobbless Sand Ripple Silt Shadow
Rock 27 8 438 1 115 7
Cobbles 0 0 15 0 0 0
Sand 30 2 1180 1 88 49

T
es

ts

Ripple 4 1 221 0 0 1
Silt 22 1 56 0 132 0
Shadow 4 0 110 1 34 144

Table 4: Confusion matrix after applying CCA on our database (d = 5) (the
classification rate is 55.08%)

We obtained a classification rate of 55.08%, a rate lower than the classifi-
cation rate obtained by applying SVM on our rough database. One gained in
computing times but one lost on the classification rate; theses results can be
explained by the fact that we haven’t obtained a good representation of our
data in a space of low dimension.

5 Conclusion

We have used here a new method of dimensionality reduction for sediment
classification. We have shown that the CCA applied on our database can’t give
a best results, this results can explained by the fact that we lost information
during projection by the CCA.

An other approach that we can use is the combination between a feature
extraction method like wavelet decomposition or co-occurrence matrices and a
feature selection method like genetic algorithm for feature selection: feature ex-
traction to get the relevant parameters of the features (images for example) and
feature selection to get the best parameters that gives a best rate of classifica-
tion.
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[1] P. Demartines, & J. Hérault, Curvilinear Component Analysis: a self-
organizing neural network for non-linear mapping of data sets. IEEE Trans-

7



action on Neural Networks 8(1), pp 711-720, 1998.

[2] J.W. Sammon, A Non-Linear Mapping for Data Structure Analysis, IEEE
Transaction on Computers, C-18(5), 1969.

[3] C. Archaux, H. Laanaya, A. Martin, & A. Khenchaf, An SVM based churn
detector in prepaid mobile telephony. International Conference On Infor-
mation & Communication Technologies (ICTTA), Damas, Syrie, pp 19-23,
2004.

[4] V. N. Vapnik, Statistical Learning Theory, John Wesley and Sons, 1998.

[5] J. Weston & C. Watkins, Multi-class support vector machines, Technical
Report CSD-TR-98-04, Royal Holloway, University of London, Department
of Computer Science, 1998.

[6] S. Buchalou, N. Davey, R.J. Frank & T.M. Gale, Dimensionality Reduction
of Face Images for Gender Classification, Proceedings of IEEE IS, 2004.

8


