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ABSTRACT 
 
This paper addresses the design of signal pre-processors 
dedicated to passive acoustic tomography. Blind processors 
of channel’s impulse response and spatial response are 
proposed and adapted with wide band transient signals such 
as marine mammals vocalizes. Full validation of blind 
channel’s impulse response processor is performed on real 
world data whereas validation of blind spatial response 
estimation is carried out on realistic synthetic data. 
 

1. INTRODUCTION 
 
Acoustic tomography is a way to produce a fast, accurate and 
cheap monitoring of water mass. This monitoring requires an 
inversion procedure made with two steps. The first one is to 
estimate acoustic properties (such as the sound speed profile of the 
water column) from the measurement of a propagated known 
acoustic waveform between fixed sources and receivers. Then a 
second step consists in inferring some physical ocean parameters 
(temperature, bottom nature) from these previous estimated 
acoustic characteristics. Large scales deep water and small scales 
shallow water configurations were successfully studied and 
associated with matched delay, matched field and matched impulse 
response inversion processing. 
 
Accurate estimate of acoustic properties requires the emission of 
powerful and recurrent signals in the adapted bandwidth and in 
agreement with the scale of the monitoring. But we would rather 
not send these hard active sounds through the water column in a 
potential military underwater warfare context, or if mammal 
species health is considered. A recent solution has emerged in the 
community to tackle this problem with the passive tomography 
processing. Passive tomography processing consists in estimating 
acoustic properties by using opportunity sources present in the 
channel at the time of interest. Some experimentations were 
recently carried out using ships, marine mammals and surface 
noises.  
 
Different levels of complexity can be formulated to insure the 
discreetness of tomography processing. The first one is the Active 
Discreet Tomography (ADT) where active emission is allowed but 
with a waveform chosen to insure a low probability of interception 
using for instance a copy of a noise component or a spread 
spectrum signal. In that case, Signal to Noise Ratio (SNR) is 

reduced compared to classic active tomography. The second one is 
the Aided Passive Tomography (AiPT) where active emission is 
forbidden but where a cooperate entity of known position can 
produce an acoustic emission linked to its natural activity. Blind 
estimation of the impulse response of the channel is performed 
with the losses of absolute time and magnitude references, and a 
reduced SNR. The last one is the Autonomous Passive 
Tomography (AuPT) where active emission is forbidden but where 
an entity of unknown position can produce an acoustic emission 
linked to its natural activity. As in the case of the AiPT, blind 
estimation of the impulse response of the channel is performed 
with the losses of absolute time and magnitude references, SNR is 
reduced, and moreover, position of the source considered as a 
nuisance parameter has to be estimated jointly with the parameters 
of interest.  
 
For AiPT, preliminary works conducted on performance prediction 
based on lower Cramer Rao bound calculus have demonstrated that 
as soon as celerity profile or bottom parameters estimation are 
concerned, the blind estimation of impulse response of the channel 
between emitter and receiver in relative time (referenced to the first 
arrival) carries enough information to inverse the problem. Thus, 
the first part of the paper addresses the problem of Blind Impulse 
Response estimation using transient opportunity source with clear 
time frequency contents such as marine mammals vocalizes. Low-
resolution and high-resolution are developed and applied with 
success to real data obtained from Laurentian channel experiment 
performed in summer 2003. 
 
For AuPT, the previous preliminary works have demonstrated that 
as soon as celerity profile or bottom parameters estimation are 
concerned at the same time that source position estimation, the 
measurement of direction of arrival associated with blind impulse 
response channel estimation carried enough information to inverse 
the problem. Then a second part of the paper deals with the 
development of a Spatial Time Frequency processor to estimate the 
temporal and spatial structure of the arrivals. This processor is 
applied with success to synthetic but realistic data in shallow water 
environment. 
 

2. TIME FREQUENCY PROCESSOR FOR AiTP 
 
When the central frequency of the opportunity source is high 
enough, acoustic ray paths propagation takes place and signal at the 
receiver can be seen as a sum of attenuated and delayed versions of 
emission. Then, if the emission has a clear time frequency content 
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such as marine mammal vocalizes, time frequency processing can 
be used advantageously. A theoretical Time Frequency mapping of 
the received signal m(t) concentrates the tempo-spectral power 
density around N versions of the instantaneous frequency curve of 
the source s(t) translated in time. The proposed processor is based 
on the main characteristics of this Time Frequency mapping. A 
first stage is dedicated to the instantaneous frequency of s(t) 
estimation, then a second stage performs a time frequency matched 
filtering of m(t) with s(t). 
To estimate the source’s instantaneous frequency function, a local 
maximum is sought on an optimal time frequency mapping which 
deletes the interference terms without significantly increasing the 
spread of the auto-terms (RID: Reduced Interferences 
Distributions). These signal-dependent time frequency 
representations are based on the optimal weighting of the 
ambiguity function by a radially signal-dependent Gaussian kernel 
(Radial Gaussian Kernel, RGK) or based on the optimal weighting 
of local ambiguity function (Adaptative Optimal Kernel, AOK) 
developed by Baraniuk and Jones  
[Bar93] . Our approach may be biased but is stable over noise and 
interferences. The algorithm used to estimate the source’s 
instantaneous frequency function is the following: 
- compute the signal-adapted Time Frequency mapping of the 
received signal, (RGKm(t,f)), 
- for each frequency bin fi, estimate the time of the first local 
maximum of the function of time RGKm(t,fi). 
 
The source’s instantaneous frequency function )(

~
tf i  obtained at 

this stage is used to estimate the channel impulse response. 
 
For known source s(t), two optimal detectors of s(t) in noise may 
be used to estimate the channel impulse response: the classical 
matched-filtering and an equivalent formulation in time frequency 
domain proposed by Flandrin [Fla88]  . If the signal to be detected 
is considered as a random one and if m(t)=s(t)+b(t) or m(t)=b(t), 
the optimal detector consists in performing the time frequency 
correlation Q between the auto Wigner-Ville of s(t) and m(t) : 

dtdfftWVftWVQ ss
T

mm ),(),(∫ ∫
∞

∞−

×=  

In passive tomography, the source s(t) is unknown, but the 
instantaneous frequency function )(

~
tfi of s(t) in given by the first 

stage, thus we can define an estimated Wigner-Ville of the source 
as follows: 

))(
~

(),( tffftWV iss −= δ where δ stands for Impulse  

A sub-optimal detector is proposed by computing the time 
frequency correlation between the auto Wigner-Ville of m(t) and 
the estimated Wigner-Ville of the source ( ),( ftWV ss ). The 
channel impulse response is estimated by looking for local maxima 
on E(t0) computed by:  

dtdffttWVftWVtE ss

T
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The temporal resolution of this first algorithm is close to the 
classical active matched filtering one. As soon as celerity profile 
estimation is concerned, first acoustic paths carry much of 
information about it, but are usually not resolved by the matched 
filter and require high-resolution processing. We are now focused 

on the development of a blind high-resolution time frequency 
processor dedicated to AiPT. 

This tool is dedicated to signals s(t) having a curvilinear 
distribution of time spectral power density. Each signal of this 
family can be locally approximated by a Chirp signal and then if 
the area of validity of this assumption and the chirp parameters 
(central frequency and bandwidth) are known, MUSIC algorithm 
can be applied to m(t) in order to estimate each delay τi. The 
critical point of the algorithm is to determine automatically for 
each time t0, the optimal neighborhood where the chirp-like 
assumption is valid. This is achieved by looking for the length L of 
a rectangular time window (wL(t-t0)) to apply to m(t) which 
minimizes the spread of the Fractional Fourier Transform of the 
windowed signal. The algorithm developed follows the flow chart 
presents in [Ger01] . 
 

 
Figure 1 :  Time Windowing – Dechirp – MUSIC Flow Chart 

 
3. REAL WORLD APPLICATIONS 

 
To observe the efficiency of the algorithms described in the second 
paragraph, we applied them on real data. 
 
3.1 Material 
 
To evaluate our algorithms, we used data provided by the ‘Institut 
des Sciences de la Mer’ (ISMER) from the University of Quebec at 
Rimouski (UQAR). Saint-Lawrence channel presents two critical 
habitat areas of marine mammals and a very dense ship traffic (see 
fig 2). To understand interaction between marine mammals 
behavior and ship radiated noise, passive recording of a few marine 
mammals sounds were performed by a network of hydrophones (5 
ocean bottom hydrophones and a 6 coastal array hydrophones) in 
order to identify and to locate them in summer 2003. At the same 
time, to understand acoustic propagation, bathymetry and sound 
speed profile measurements were done (see fig 2). Details on this 
experimentation can be found in [Sim04] . 
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3.2 Data Analysis 
 
Among the large set of collected data, impulse sound with 
bandwidth from 0 to 1 kHz, frequency modulation from 500 Hz to 
8 kHz, and narrow band sound produce the three major families of 
marine mammals sounds where multi-paths structure of the 
measurement can be observed using the first two ones. A Beluga 
vocalize with decreasing frequency modulation of 2 kHz 
bandwidth (see fig3) is selected as a test bench for our algorithms.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The time frequency in figure 3 is the spectrogram of the test sound 
recorded at the first hydrophone of the coastal array. 
Resolved multi-paths can be observed on the spectrogram. It 
seemed to confirm our hypothesis of acoustic ray paths 
propagation, then it is proposed to estimate the impulse response of 
the channel between beluga and the receiver with low and high 
resolution algorithms presented in section 2 and to compare them 
with a simulated one given by ray path Bellhop code using the 
position of Beluga obtained by triangulation between all coastal 
array receivers. 
 
3.3 Results 
 
Low-resolution algorithm provides estimates of 
instantaneous frequency law: 

]6.0,0[),)(2exp()(
0

stduufjte
t

i ∈= ∫π  

with )()18.04.043.178.1(10)( 234 Hzttttfi +−+−=  
and of the channel  impulse response (see fig 4). 
 

 
 
 
 
 
The estimate impulse response shows two groups of beams 
separated by 0.32s, which represents a length difference of 466 
meters. The order of magnitude of this difference is compatible 
with the lag due to one vertical go and back scan in the water 
column and tends to prove that the first beams are direct beams and 
the second ones are surface or surface-bottom reflected beams (the 
receivers are close to the bottom). A zoom on the first group of 
arrivals presents multiples local maxima proving multiple arrivals 
existence (refracted and bottom reflected ones). Inversion to 
estimate the celerity profile requires a more resolved estimation of 
these first beams. 
High-resolution algorithm applied on the same test sound provides 
the time frequency image of the arrival given fig.5 and the 
estimated impulse response fig.7.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This algorithm seemed to give good results and succeeded in 
finding 4 coherent paths. However, to definitely validate our 
approach, we had to locate the source to be able to simulate the 
impulse response between beluga and receiver. For this, location is 
estimated by triangulation with relative time of arrival between all 
the hydrophones of the coastal array thanks to hyperboling fixing 
method described in [Spi99] . 
Because of the small aperture in deep, we were only able to locate 
the whale in Latitude and Longitude (48,2657 °N, -69.4640°W). 
To handle this problem, we simulated the propagation in the 
channel thanks to Bellhop (parameterized with true bathymetry and 
sound speed profile) for a source positioned at the Latitude and 
Longitude found by hyperboling fixing and for all depths between 
0 to 240m. 

Figure 2. Study area with the location of both the coastal array
and the 5 buoys 

a) A typical celerity profile measured in this area. 

Figure 5. Spectrogram of the opportunity vocalize and the 4th order 
blind channel IR high-resolution algorithm solution 

Figure 3. Spectrogram of the opportunity vocalize 
(Window used: Hamming 25ms) 

Figure 4 : Blind impulse response estimation using time-
frequency processor applied on vocalize of the figure 3 

Opportunity vocalyse 
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On figure 6, an example of plots of the rays generated by 
BELLHOP is presented. 
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Thus, several channel impulse responses are obtained as a function 
of depth, and they are compared to the impulse response estimated 
with the high-resolution algorithm described in the second 
paragraph. Finally, the more similar channel impulse response was 
found for an almost 80 meters depth. 
On figure 7, a comparison between 5 channel impulse responses 
estimates is given:  
- One simulated with Bellhop with a 80m depth source (fig.7 Curve 
5) 
- One obtained by an Active-Adapted Filter (we extracted the 
instantaneous frequency law of the real vocalize, then we 
constructed the corresponding signal and we made it forward in the 
simulated channel (fig.7 Curve 4) 
- One given by high-resolution passive algorithm (fig.7 Curve 2) 
- One given by low-resolution passive algorithm (fig.7 Curve 1) 
- One obtained by an Active-Adapted Filter but with a smaller 
band. This band is equal to the larger chirp one, obtained during 
the limited development stage, actually 272 Hz. (fig.7 Curve 3) 
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This comparison seemed to prove the efficiency of our high-
resolution algorithm because of the good fit observed between 
theoretical time of arrival given by Bellhop and passive estimation 
of the impulse response given by the algorithms. The level of 
resolution offered by the high-resolution passive algorithm is still 
far from the active matched filter one but is very close to the one 
obtained by active matched filter with local time windowing. This 
level of resolution is satisfying enough in our case to explain the 
temporal structure of the arrival.  
 

4. ESTIMATION OF SPATIAL AND TEMPORAL 
STRUCTURE OF MULTIPATHS ARRIVAL 

DEDICATED TO AuPT  
 
Time-frequency-space representation (TFSR) has been recently 
introduced  [Ami00] [Zha01] to estimate the direction of arrival of 
source signals that are localizable in the time frequency domain 
thanks to array of sensors. From the measurement of the acoustic 
field by an array of sensors, a square matrix TFSR is formed with 
the auto and cross time frequency representation of any couple of 
sensors. Under narrow-band assumption it is shown that TFSR, 
based on Cohen’s class of time frequency distribution, follows the 
same model that the spatial autocorrelation matrix. 
The application of the TFSR to high-resolution direction finding 
algorithm MUSIC outperforms classical MUSIC in the following 
critical  cases : 
- close direction of arrival, 
- a number of sources higher than the number of sensors, 
as soon as the components are well separated in time frequency 
space.  
 
4.1 Signal Model 

 
Let an Uniform Linear Array of M sensors receives L narrow-
band transient signals coming from L unknown directions. 

 The M×1 vector of sensor outputs is modelled as :  
)()()]([)( ttt nsAx += θ    (1) 

where :  
- )().....([)]([ 1 Lθθθ aaA = is the M×1  matrix stacking the 
steering vectors,  
- )( iθa is the steering vector of the ith source,  

- ]........,[ 1 Lθθ=θ is the L×1  direction of arrival vector,  

- T
L tstst )](),...,([)( 1=s is the L×1  vector of sources waveforms 

- )( tn is the M×1 vector of white sensor noise,  

and T(.) stands for the transpose. 
 
4.2 Spatial Time-Frequency analysis and DOA Estimation 
using transient signals  
 
The discrete form of the spatial pseudo-Wigner-Wille distribution 
matrix (SPWVD) for any time frequency point is given by : 
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inserting (1) into (2) and taking the expectation, the TFSR model 
becomes : 

IAWVATFSR 2)]()][,()][([)],(E[ σθθ += H
ssNB ftft    (3) 

Figure 6. Plots of the rays generated by Bellhop obtained 
with  a 80m-depth source. 

Figure 7. Comparison between Channel IR obtained with 
different methods 
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then the directions of arrival can be estimated by eigen- 
decomposition of the mean TFSR matrix and signal and noise 
subspace estimations. 
When applications on real data are concerned, exact expectation 
cannot be achieved  and an estimate is obtained by an average of 
‘instantaneous’ TFSR matrices on a pre-selected time-frequency 
area Ω. 

)],(E[),( ftdtdfft TFSRTFSRTFSR ≈= ∫
Ω

Ω   (4) 

 
Main characteristics of TFSR depend on careful choice of area Ω. 
Choosing Ω where SNR is high improves detection, choosing 
Ω where only one single source takes place allows to obtain high 
resolution estimation of DOA and to deal with more sources than 
sensors. 
 
4.3 Time-Frequency-Space Processor  

 
The following scheme provides a synoptic implementation of the 
time-frequency-space processor applied to blind autonomous 
passive tomography. 
 

 Figure 8. Time-Frequency-Space Processor 
 

Assuming an ULA of M sensors and L arrivals coming from 
different DOA, by performing a single-sensor processing describes 
in section 2, the temporal structure of arrival (time of arrival and 
magnitude of arrival) is estimated. In addition,  analyses conducted 
on time frequency content of the received signals allow to identify 
energetic time frequency area Ωi associated with a particular 
source and path. For each time frequency area Ω, a time-
frequency-spatial processing is applied and is able to provide all 
DOA of the sources. 
 
It is to be noted that our time frequency processor is efficient in the 
case of a well-solved arrivals in the time frequency plane, which 
means that the arrivals should be wideband signals. But this fact 
introduces a bias and a loss of resolution in DOA measurements after 
spatial processing [Del02] . For this reason the narrowband MUSIC 
algorithm is replaced with the wideband-MUSIC one [Hsi88]  
[Wan85] and in the future we will deal with the WIDEBAND-TF-
MUSIC [Ger00]  to rectify the loss of resolution during spatial-time-
frequency processing. 
 
 
 

4.4 Simulation Results 
 
In all simulations, the case of a realistic propagation in  a 
horizontal uniform celerity profile shallow water channel (200m 
depth and 1000m range). We assume that the source and the 
receiver are close to the surface and the distance in-between is 
equal to the channel’s range ; the source and the receiver positions 
correspond to 20m and 30 m depth, respectively. 
 
Unfortunately, in that case of critical geometric source and receiver 
configurations, the arrivals are not well-solved spatially and in the 
time-frequency plane, it is also important to note that the arrivals 
are classified by echoes of four. Figure 9 displays the impulse and 
the spatio-temporal responses of the channel. 
 

 Figure 9.  Impulse and spatio-temporal responses of the channel 
 
In what follows the first four echoes squared in will be studied and 
respectively correspond to : 

]725.0,72.0,715.0,71.0[];3.22,3.20,2.23,3.21[ =−−= τθ . 
 
The receiver is a ULA of M=36  sensors spaced of 3/λ  apart and 
the sources are considered first as narrowband ( HzB 85= ) and 
then as wideband LFM ( KhzB 2= ) around a central 
frequency Khzf 90 = .  
In these figures the fixed dBSNR 15=  has been assumed and only 
the positive angles are drawn for better illustration. 
 

 
Figure.10 

The left one displays a WV time-frequency representation behind 
the first sensor of the array. 

The right one displays :  
1 – narrowband MUSIC applied to narrowband signals 

2 – narrowband TF MUSIC applied to narrowband signals 
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Figure.11 

The left one displays a WV time-frequency representation behind 
the first sensor of the array. 

The right one displays : 
1 – narrowband MUSIC applied to narrowband signals 

2 – narrowband TF MUSIC applied to wideband signals 
3 – wideband MUSIC applied to wideband signals 

 
Figure 10 displays spatial spectra, time-frequency-space spatial 
spectra and time frequency representation of signal measure at first 
sensor of the array, in the case of narrowband signal. In this 
configuration, spatial narrow band processors perform well and are 
able to resolve DOA of each path (MUSIC narrowband and TFSR-
MUSIC) but it is important to note that the time frequency 
representation does not resolve the four echoes and so complete 
spatial and temporal characterisation fails.   
 
Figure 11 displays spatial and time-frequency-space spatial spectra 
and time-frequency representation of signal measure at first sensor 
of the array in the case of wideband signal. In this case, narrow 
band TFSR spatial processing failed (bias and loss of resolution) 
(MUSIC narrowband applied to wide-band signals) and spatial  
wideband MUSIC processing succeeds in nulling bias. 
Improvement in angular resolution will be offered as a perspective 
by wideband spatial time frequency processing.  In this case, the 
time frequency representation resolves the 4 echoes and so, a 
complete spatial and temporal characterisation is achieved.   
 
 

5. CONCLUSION 
 
In this communication, we have presented two blind channel 
impulse response estimation algorithms. We have demonstrated 
their capabilities to perform the identification of the impulse 
response channel without using the knowledge of the emitted 
source signal in the case of a single hydrophone.  
We have succeeded in applying them to real data obtained from 
Laurentian channel experiment performed in summer 2003.  
Performances obtained with the high-resolution algorithm are close 
to classical active matched filtering methods. We will definitely 
validate our algorithms with the remained Laurentian channel data 
(data from the five ocean bottom hydrophones deployed in the 
centred square configuration cf. fig.1), which will allow us to 
locate more precisely the emitted whales. 
The time-frequency-space processor has been validated in a 
realistic context of underwater acoustic propagation. 
The bias and the loss of resolution introduced by the wideband 
sources were rectified by applying specific wideband spatial 
treatment.  
 
Additional work will be carried out applying WIDEBAND-TF-
MUSIC [6] to deal with the time frequency-space of the same 
problem. 
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