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Abstract The theory of belief functions in discrete domain has been employed with
success for pattern recognition. However, the Bayesian approach performs well pro-
vided that once the probability density functions are well estimated. Recently, the
theory of belief functions has been more and more developed to the continuous case.
In this paper, we compare results obtained by a Bayesian approach and a method
based on continuous belief functions to characterize seabed sediments. The proba-
bility density functions of each feature of seabed sediments are unimodal and esti-
mated from a Gaussian model and compared with an α-stable model.

1 Introduction

The theory of belief functions, introduced by Dempster [4] and formalized by
Shafer [13], has found in these recent years many applications especially in pattern
recognition. The Bayesian approach performs well provided that once the proba-
bility density functions (pdfs) are well estimated. However, the Bayesian approach
introduces the notion of prior probabilities. It is possible to avoid this problem by
using the theory of belief functions. The theory of belief functions is often presented
as an extension of the probability theory. However, the theory of belief functions is
not often been used in problem of estimation. Recently, many papers [5, 16] have
been proposed to extend the theory of belief functions in discrete domain to contin-
uous domain. In [1, 11], the authors proposed solutions to solve problem of pattern
recognition from continuous belief functions.

∗ Anthony Fiche, Jean-Christophe Cexus, Ali Khenchaf
ENSTA Bretagne, 2 rue François Verny, 29806 Brest Cedex 9, France, e-mail: {anthony.fiche,jean-
chirstophe.cexus,ali.khenchaf}@ensta-bretagne.fr
∗∗ Arnaud Martin
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We propose a supervised classification of seabed sediments based on a Bayesian
approach and compared with a method based on the theory of continuous belief
functions. The pdfs of each seabed sediment are bell-shaped 1. Many distributions
can have this property: Gaussian, Weibull, K . . . . However, the pdfs from seabed
sediments have the properties of skewness and heavy tails. A distribution is said to
have heavy tails if the tails decays slower than the tail of the Gaussian distribution.
Therefore, the property of skewness means that it is impossible to find a mode where
the curve is symmetric. It is possible to consider these contraints from α-stable dis-
tribution. Consequently, we use two models of estimation during the classification:
Gaussian and α-stable distributions.

The remainder of this paper is organized in the following manner. In section 2,
we introduce the theory of continuous belief functions. In section 3, we describe
the data set, the model of estimation and compare results between the Bayesian
approach and the method based on continuous belief functions.

2 Background on continuous belief functions

2.1 Basic belief density

Recently, Smets [16] extended the definition of belief functions to the set of reals
R=R∪{−∞,+∞} and basic belief assignment (bbd) are only attributed to intervals
ofR. Let us consider I = {[x,y],(x,y], [x,y),(x,y);x,y∈R} as a set of closed, half-
opened and opened intervals of R. A bbd mI (x,y) linked to a specific pdf is a non
negative function on I such that mI (x,y) = 0 if the interval defined by (x,y) is not
closed in I . The closed intervals [x,y] which satisfy the relation mI (x,y) > 0 are
called focal elements. From the definition of the bbd, it is possible to define others
belief functions [16] as in the discrete case credibility function belR, plausibility
function plR and communality function qR. A bbd is said to be “consonant” when
focal elements are nested. Focal elements Iu can be labeled as an index u such that
Iu ⊆ I′u with u′ > u.

2.2 Least commitment bbd induced by an unimodal pdf

The definition of pignistic probability [14] for a < b is:

Bet f ([a,b]) =
∫ x=+∞

x=−∞

∫ y=+∞

y=x

min(y,b)−max(x,a)
y− x

mI (x,y)dxdy (1)

1 i.e. the probability density function is unimodal with a mode µ , continuous and strictly
monotonous increasing (decreasing) at left (right) of the mode
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It is possible to calculate pignistic probabilities to have basic belief densities. How-
ever, many basic belief densities exist for one same pignistic probability. To resolve
this issue, we can use the consonant basic belief density. This definition is used to
apply the least commitment principle [15], which consists in choosing the least in-
formative belief function when a belief function is not totally defined and is only
known to belong a family of functions. The function Bet f can be induced by a set
of isopignistic belief functions Biso(Bet f ). Many papers [12, 16, 1] deal with the
particular case of continuous belief functions with nested focal elements. The least
commitment principle proposes to choose the least informative mass function, i.e.
the mass functions must be ordered. An order relation is given in equation 2, but
there are other order relations.

(∀A⊆R,qR1 (A)≤ qR2 (A))⇒ (mR1 ≤ mR2 ) (2)

For example, Smets [16] proved that the basic belief assignment mR attributed to an
interval I = [x,y] with y > µ related to a bell-shaped pignistic probability function
with a mode µ is determined by 2:

mR([x,y]) = θ(y)δ (x− γ(y)) (3)

with x = γ(y) satisfying Bet f (γ(y)) = Bet f (y) and θ(y):

θ(y) = (γ(y)− y)
dBet f (y)

dy
(4)

The build basic belief assignment mR is consonant and belongs to the set Biso(Bet f ).

2.3 Link between pignistic probability function and plausibility
function in R

The available information are the conditioned pignistic density Bet f [Ci] with Ci ∈Θ ,
where Θ is called the frame of discernement. The function Bet f [Ci] is supposed to
be bell-shaped. The plausibility function from a bbd mR with x > µ is obtained by
an integral of equation (4) between [x,+∞[:

plR[Ci](I) =
∫ +∞

x
(γ(t)− t)

dBet f (t)
dt

dt (5)

By assuming that Bet f is symmetrical, an integration by parts can simplified the
equation (5):

plR[Ci](I) = 2(x−µ)Bet f (x)+2
∫ +∞

x
Bet f (t)dt (6)

2 δ refers to the Dirac’s measure.
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We can calculate
∫ +∞

x
Bet f (t)dt in a particular case of symmetrical Bet f by using

the Chasles’ theorem. Consequently, the equation (6) can be simplified [7]:

plR[Ci](I) = 2(x−µ)pd f (x)+2(1− cd f (x)) (7)

If x < µ , we use the variable modification x = 2µ − y. In the particular case of
Gaussian pdf, Caron et al. [1] propose the plausibility function:

plR[Ci](I) = 1−F3((x−µ)(Σ)−1(x−µ)) (8)

The function Fd+2 is a cumulative density function of the χ2 distribution with 3
degrees of freedom, µ the mean and Σ the standard-deviation of a Gaussian pdf.
It is difficult to generalize in the case of asymmetric pdf because the function
γ(y) = x satisfying Bet f (γ(y)) = Bet f (y) is not trivial. The plausibility function re-
lated to an interval I1 = [x1,y1] is defined by the area defined under the α-cut such as
α = Bet f (x1) (Figure 1):

plR[Ci](I1) =
∫ x1

−∞

Bet f (t)dt +(y1− x1)Bet f (x1)+
∫ +∞

y1

Bet f (t)dt (9)

In general, we know only one point y1. We estimate numerically x1 such that
pd f (y1) = pd f (x1). Finally, the plausibility function related to the interval I1 is:

plR[Ci](I1) = 1+ cd f (x1)− cd f (y1)+(y1− x1)pd f (x1) (10)
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Fig. 1: Plausibility function in the case of asymmetric pdf.

In classification, we assume that we have several pdfs associated to a class Ci. We
can calculate a plausibility function related to its pdfs by using the least commitment
principle. Several plausibility functions can be combined by using the general Bayes
theorem [15, 3] to calculate mass functions allocated to A of an interval I:
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mR[x](A) = ∏
C j∈A

pl j(x) ∏
C j∈Ac

(1− pl j(x)) (11)

3 Application to pattern recognition

3.1 Data set

The data set are picked up by the Service Hydrographique et Océanique de la Ma-
rine (SHOM) with the Daurade Autonomous Underwater Vehicle (AUV) from the
Atlas DESO 35 mono-beam echo sounder in the Mediterranean Sea off the coast
of Toulon. Raw data represents an echo signal amplitude according to time. These
data are processed to obtain some features, which have been normalized between
[0,1] (defined and used in the Quester Tangent Corporation (QTC) software [2]).
The frame of discernment is Θ = {rock,sand,silt}, with 6017 samples from rock,
7338 samples from sand and 4853 samples from silt. From the data, we choose
the features called the “third quantile calculated on echo signal amplitude” and the
“75th quantile calculated on cumulative energy”. The authors would like to thank
the Service Hydrographique et Océanique de la Marine (SHOM) for the data and G.
Le Chenadec for his advices about the data.

3.2 Models of estimation

We use two models of estimation: Gaussian and α-stable distributions. The Gaus-
sian distribution is a particular case of α-stable distribution [10]. Several equivalent
definitions have been suggested in the literature to parametrize an α-stable distribu-
tion from its characteristic function [17, 18]. Zolotarev [18] proposed the following:

φ(t) =

 exp(itν−|γt|α [1+ iβ tan(
πα

2
)sign(t)(|t|1−α −1)]) if α 6= 1

exp(itν−|γt|[1+ iβ
2
π

sign(t) log |t|]) if α = 1
(12)

with α ∈]0,2] is the characteristic exponent, β ∈ [−1,1] is the skewness parameter,
γ ∈ R+∗ represents the scale parameter and ν ∈ R is the location parameter. In
general, the notation Sα(β ,γ,ν) refers to α-stable distributions.
The α-stable pdf, noticed pd fα , is obtained by calculating the Fourier transform
of its characteristic function (cf. [9] for the implementation). An α-stable random
variable can be estimated by using methods based on quantiles or moments. For the
rest of the paper, we use a method based on moments developed by Koutrouvelis [8]
in order to estimate the parameters α , β , γ and ν .

To implement the classification with the belief functions, we firstly need to es-
timate the parameters of distribution from the learning base. For each feature of
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Fig. 2: Empirical pdfs and its estimations (The first row corresponds to the feature
called “third quantile calculated on echo signal amplitude” and the second row cor-
responds to the feature called “25th quantile calculated on cumulative energy”).

vectors belonging to the test base, the plausibility functions for each class are then
calculated from equation (10). These plausibility functions are combined from equa-
tion (11) to obtain two mass functions. These two mass functions are combined
by the conjunctive combination (we stay in open-world). Indeed, m1 and m2 and
∀X ∈ 2Θ :

m(X) = ∑
Y1∩Y2=X

m1(Y1)m2(Y2) (13)

The decision is finally made by using the maximum of the pignistic probabilities.

3.3 Results

The two features are considered as a source of information. 5000 samples are ran-
domly selected for the data set. Half the samples are used for the learning base and
the rest for the test base. For the two approaches, the parameters of each model are
estimated from the learning base. For the Bayesian approach, we need to estimate
the prior probabilities p(Ci) from the learning base approach. For each seabed sedi-
ment, the prior probabilities correspond to the proportion of seabed sediments in the
learning base. The application of Bayes theorem gives posterior probabilities:

p(Ci/x) =
p(x/Ci)p(Ci)

n

∑
i=1

p(x/Ci)p(Ci)

(14)
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Finally, the decision is chosen by using the maximum of the posterior probabilities.

We can observe that the assumption of the α-stable model can easily accommo-
date the data compared to the Gaussian model (Figure 2). For each model and each
method, we can observe that there is confusion between sand and silt (Table 1,2,3,4).
Indeed, these sediments have similar properties. With the Gaussian models, we
can observe that the theory of belief functions (Table 2) (classification accuracy of
70.92 %) give better results compared to the Bayesian approach (Table 1) (classifi-
cation accuracy of 61.24 %). The belief functions take into account the imprecision
of data introduced by the Gaussian model. The α-stable model gives better results
compared to the Gaussian model because the α-stable can easily accommodate the
data compared the Gaussian model. However, the Bayesian approach (Table 3) (clas-
sification accuracy of 82.68 %) gives better results than the belief functions (Table 4)
(classification accuracy of 80.44 %) with the α-stable model but not significantly.
We can explain these phenomena by the fact we introduce more information with
the prior probability. The Bayesian approach performs well provided that once the
probability density functions are well estimated. However, the probability density
functions are poorly estimated. The theory of belief functions takes into account of
imprecision/uncertainty during the learning step.

Table 1: Confusion matrix of seabed classification re-

sults based on the Bayesian approach with the Gaussian

model

Ground truth Predicted Seabed Type

seabed type rock sand silt

rock 8.48 % 23.00 % 1.28 %

sand 0.00 % 37.32 % 2.80 %

silt 0.36 % 11.32 % 15.44 %

Table 2: Confusion matrix of seabed classification re-

sults based on the theory of belief functions with the Gaus-

sian model

Ground truth Predicted Seabed Type

seabed type rock sand silt

rock 32.40 % 0.00 % 0.36 %

sand 12.44 % 20.92 % 6.76 %

silt 7.20 % 2.32 % 17.60 %

Table 3: Confusion matrix of seabed classification re-

sults based on the Bayesian approach with the α-stable

model

Ground truth Predicted Seabed Type

seabed type rock sand silt

rock 28.28 % 0.04 % 4.44 %

sand 0.00 % 34.88 % 5.24 %

silt 0.84 % 6.76 % 19.52 %

Table 4: Confusion matrix of seabed classification re-

sults based on the theory of belief functions with the α-

stable model

Ground truth Predicted Seabed Type

seabed type rock sand silt

rock 26.48 % 0.00 % 6.28 %

sand 0.00 % 29.84 % 10.28 %

silt 0.52 % 2.48 % 24.12 %

3.4 Conclusion

In this paper, we show the interest in using the theory of belief functions compared
to a Bayesian approach in classification, especially to model imprecision of data.
The problem with the Bayesian approach is that we introduce the prior probability
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We show the interest to use the α-stable model compared to the Gaussian model to
estimate data from a mono-beam echo sounder. However, the proposed approach is
limited to the unimodal case. In [6], the authors deal with the problem of the belief
functions linked to a multimodal pdf.
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