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BELIEF FUNCTIONS INDUCED BY A MULTIMODAL PROBABILITY
DENSITY FUNCTIONS, AN APPLICATION TO THE SEARCH AND
RESCUE PROBLEM

P.-E. DORE, A. MARTIN', I. ABI-ZEID?, A.-L. JOUSSELME AND
P. MAUPIN?

Abstract. In this paper, we propose a new method to generate a connuo
belief functions from a multimodal probability distribati function defined
over a continuous domain. We generalize Smets’ approacheirsénse that
focal elements of the resulting continuous belief functian be disjoint sets of
the extended real space of dimensianWe then derive the continuous belief
function from multimodal probability density functionsing the least com-
mitment principle. We illustrate the approach on two exaspf probability
density functions (unimodal and multimodal). On a caseystfdSearch And
Rescue (SAR), we extend the traditional probabilistic feamrk of search the-
ory to continuous belief functions theory. We propose a nptintization crite-
rion to allocate the search effort as well as a new rule to tepihee information
about the lost object location in this latter framework. Weafiy compare the
allocation of the search effort using this alternative utaiety representation
to the traditional probabilistic representation.

Mathematics Subject Classification.Continuous belief function, multi-
modal probability density function, consonant belief ftioe, Optimal search,
Search and Rescue (SAR).

1. INTRODUCTION

The theory of belief functions is a powerful formalism to Heéth imperfect infor-
mation and has been widely used in many applications sucleaasiftcation, decision
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making, association. As defined by Dempster [5] and Shafe}; lief functions are
defined over so-called frames of discernment that are dxelasd exhaustive sets of hy-
potheses . A frame of discernment is a discrete set of unedddements. The extension
of belief function theory to continuous frames of discermtleads to the definition of
continuous belief functions. The definition of belief fuiocts on real numbers has not
been explored extensively up to this day [14, 18, 25, 27], andrticularly interesting
application is the extension of the probabilistic estimiadi

In this paper, we model belief functions following [18, 23] 8ince this approach pro-
vides an explicit link between belief functions and proltigbdistributions. We adopt a
representation where basic belief assignments (bba)lamatdd only to connected (non-
disjoint) sets ofR™ (space of real numbers of dimensio However, when belief func-
tions are issued from multimodal probability distributipnve assign belief functions to
unions of disjoint sets, which therefore requires a forsmlto describe a more complex
frame of discernment.

We propose an alternative representation of continuousfldghctions to the Smets’
representation [25]. After some theoretical backgrountelief function theory in Sec-
tion 2, we present Smets’ approach [25] to continuous béliettions in Section 3. In
Section 4, we propose a new representation of continuoief fighctions such that focal

elements belong t& @n), the Borelo-algebra ofR”. We focus on consonant belief

functions, i.e belief functions with nested focal elemettén [3,18,25]. We illustrate the
approach on two examples of probability density functiaarg] compare our approach
to the one suggested in [3, 25] by computing the consonargftfahction linked to a
Gaussian mixture. We then apply the approach to the SeardhR&scue (SAR) prob-
lem[1,11-13]in Section 5.

2. DISCRETE BELIEF FUNCTIONS

Initially, belief functions were defined over a discrete andrdered frame of discernment
Q, which is a finite set of mutually exclusive elements [5, 2], @here2‘’ denotes the
power set of).

2.1. BASIC FUNCTIONS

A basic belief assignment (bba) is a mapping fron2® to [0, 1] such that

> m®(A) = 1. Afocal element ofn is an elementi of 22 which bbam* (A) is not
ACQ
equal to zero. The following functions are defined for eack Q:

e belief function

el (X) = > mP(4) (1)

¢ plausibility function

pi(X)= > m?(4) 2)

ACQ,ANX 2D
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e commonality function
¢! (X) =D m?(4) (3)

e pignistic probability [22]

vy - \ANX] m®(4)
BetP (XFAZQQ A T o) 4)

These functions are used to represent the informationrtritesl by an agentbel and
pl can be respectively interpreted as lower and upper boundeeoprobability for a
given event, whiley, is a measure of non specificity. The commonality functiémoften
used for its convenient computational properties. Theiptgnprobability models the
bet of an evidential source of information and is used for imgklecision in evidence
theory. To combine the information given by two independenirces of information, the
conjunctive rule of combination is often used. Two bbag andm$ combined by the
conjunctive rule, lead tn{, , defined for allA C © by:

migs (A) = > m{(X)mg (V) (5)
XNY=A

which can also be written as:
@'o2(A) = ai'(A) - 45 (A) (6)

using the commonality function.

2.2. THE LEAST COMMITMENT PRINCIPLE

ThelLeast Commitment PrinciplRuggest the choice of the least committed belief func-
tion. This principle can be applied for instance to seveltataative representations of a
piece of information or to find the original belief functiorom a pignistic distribution.

The least commitment principle relies on an order relatietwieen belief functions in
order to determine if a belief function is more or less condithan another. A possible
partial ordering_, over belief functions is based on the commonality functiod &
defined by:

(VACQ,¢7" (A) < g5’ (A)) = (mPCym5) ! (7)

Hence, the belief functiobels! is less committed thai[$? according to the commonality
ordering.

INote that(m$C, mS) is equivalent to(belXCq belS?).
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2.3. THE GENERAL BAYESIAN THEOREM

The classical Bayesian theorem of conditional probabfigg been extended to the
theory of belief functions as followthe General Bayesian Theorem (GTRB]: Let
m* be a bba and a hypothesis.m [h] (A) is the value of the bban®* for A if h is
true. In this case we havg m* [h] (A) = 1. Hencem® [h] is the bba obtained after

ACQ
conditioningm® on h. Let 7 and) be two frames of discernment and’ be a bba
defined ovefT. If we assume that” [w] is known for allw € €, then ift* C T is true,
we have according to the GTB:

m® 1] (4) = [[p" ) () - T] (1 —pl" ] (7)) (8)

wEeA WwEA
This equality can be deduced from the maximum likelihoodgple [24]:
pI? (] (A) = pl7 [A](t") (9)

This principle remains valid if the frame of discernmentdmtinuous such as the set of
real numbers and if we consider a finite partition of a realldetvever, the resulting belief

functions will be discrete although the frame of discerntisrcontinuous. Therefore,

there is a need for a richer model for defining continuouselbélinctions, as presented in
the next section.

3. CONTINUOUS BELIEF FUNCTIONS ON REAL NUMBERS

Using the belief function framework in order to model theoimhation on a continuous
frame of discernment is not an easy task. Indeed, as beletiins do not satisfy the
additivity property {.e. bel (A U B) # bel (A) + bel (B) — bel (A N B)), focal elements
need to be easy to handle. A first attempt at this [25, 27] usebiz belief density (bbd)

functionm® ", an object equivalent to the probability density functipdf] in probability
theory. The bbd allocates a density to subsef& of

3.1. BasIC BELIEF DENSITY ON REAL NUMBERS

Smets [25] suggests to model continuous belief function® by applying mass only
on intervals ofR. He links a bbdn™ onR to a pdf /7 onT = {(x,y) € R*|z < y} (he
set[z,y] = 0 if y < z). Hence, he defines® [z,y] = f7 (z,y). By analogy with the
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discrete case in Equations (1), (2) and (3), he obtain:

bel®([a, b)) / (z,y) dy dz (10)
x; y=-+o0

([a,b]) / / fT (z,y)dydz (112)
Y= +oo

([a,b]) / / 7 (x,y) dy dz (12)

We notem1©2 the bbd resulting from a conjunctive combmaﬂonmlf andm2 The

productm®(A) - mE(B) is allocated tmﬂf@ , (AN B). For each closed set of R, we
have:

0 o2(A) = ¢i(A) - g5 (A) (13)

We presented above an introduction to the results obtaip&htets [25]. We can extend
thistoR" using boxes instead of intervals or using ellipsoids as iro@a work [3].

3.2. CONSONANT BBDS

Consonant bbds have been studied in several papers [3,]18;@&al elements of con-
sonant belief function are nested. For eatland B, focal elements ofnE", we have
ACB <& (B) < & (A). Therefore it is quite natural to assign a real numptr
a focal elemenf'(y) such thaty < ¢’ implies F'(y) C F(y') for y # y’, meaning that
the order on the focal elements reduces to an orderlever

We note that the plausibility function of a consonant bbd igoasibility function.

K?’L _ K?’I,
Indeed we have that™ (A) = max (pl (:c)).

3.3. LEAST COMMITTED BBD INDUCED BY A UNIMODAL PDF

To each bbdn®" corresponds a pignistic pdiet f and a pignistic probability3et P.
For each intervala, b] of R, we have [25]:

BetP([a,b]) / / “min(y, b max(w’a)Betf([m,y])dydx (14)

— T

The hypothesis is thaBet P has been obtained by an underlying belief function and the
problem becomes one of identifying this belief functionwéwer, since there no one-to-
one correspondence betweferd and Bet P many solutions exist. To this end, the least
committment principle can then be applied as suggestedbinfBere the corresponding
optimization criterion is the maximization of commonalitsdering (Eq. (7)). Smets [25]
proved that in this case, the least committed bdd for the conatity ordering §-LC bbd)
associated wittBet f onRR whose graph is “bell-shapedi&{ unimodal) is consonant.
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Let Zlso( Bet P) denote the set of bbds whose pignistic probability is equ#idt P,
i.e. the set ofisopignisticbbds. For each intervéd, b] of R we have:

dBet f (b)

m*([a,b]) = (7 (b) = ) =2

6 (a—~ (b)) (15)
with b in [n, co] and~ (b) in [—oo,n] such thatBetf (b) = Betf (v (b)), n being the
mode ofBet f . The focal elements of this belief function are theuts of Betf. In [3],
Caronet al. provide the expression of theLC bbd associated with the Gaussian pdf of
R™. They prove that its focal elements are the confidence seéteafssociated Gaussian
pdf.

4. CREDAL MEASURE AND INDEX FUNCTION

Both the approaches of Smets and Caron et al. described iprévéous section are
based on the description of focal elements from a continfmostion. However, they
only take into account the frames of discernment built withreected (non-disjoint) sets
subsets? oR". One drawback of these approaches is thatdtheits of a multimodal
function cannot be modeled, as they are not connected selsfiojtion (cf. example 4.6
in Section 4.6). If we accept as a focal set any elemeB{(&" ), the Borelo-algebra, we
cannot compute the consonant belief function linked to aimobal pdf.

We propose here to explicitly introduce an index functiomiag at describing the
focal elements of a continuous belief function [9].

4.1. BasIcs
Our airp is to build a belief function ové® ", sayuB(W), which set of focal elements is
]-‘(MB(R )). Let ! be an onto mappinipdex functiorfor a set of real numberkcalled

theindex spacesuch that all the focal elements of a belief function aredesd usingl:
ffe Ie B(EZ) — ]:(;LB(KTj)
y — f1(y)
wherel is the dimension of the index spaée We can consider:
measure on a measurable spata3(1)) that satisfies the conditiof dug(ﬁn) (y) < 1.
I

(16)

KE") as a positive

If foreachA € B(@n), the following sets belong t8(1),

Fea={yellf'(y) C A} (17)
Faa={ycI|(f'(y) nA) # 0} (18)
Foa={yelIlAC f'(y)} (19)

°Thea-cuts of a functionf from R™ to R+ are the set§y € R"|f(y) > a}.
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we are able to compute the belief functions usjffy We call the measurable space

1,B(I) ,MB(W)) credal spaceand the corresponding positive measuf@n), credal
measure
We define for alld ¢ B(@n):

i) = [ au @) (20)
Fca

pAE) (4) = / %) (y) (21)

) = [ a4 (22)

We note that, the dimension of, does not depend am the dimension of the frame of
discernment. As an example, Smets suggests in [25] to usesutfR- to describe focal
elements of a belief oR while Caronand al.in [3] use an index space of dimension 1 to
describe the focal elements of a Gaussian belief functioR an

4.2. VARIABLE SUBSTITUTION

Integration by substitution is a method to find integrals.isTimportant tool can be
used in the theory of belief functions.

Theorem 4.1. Let ft and f’= be two index functions associated with two credal mea-
B(R") BR") . I
suresy, andu, . Lety be a one-to-one mapping such thaty,) = y» implies
f1 (1) = f'2 (y2). These credal measures are equal if:
B(R"™ BR"
A () = [det (¢ (00) Lz (o (1)) (23)

This means that if{; C I; and Hy C I are two elements of a Boretalgebra such

. BE" BE"
thaty (H,) = Hz andp ™' (Hz) = Hyimply [, dul(R ) (1) = [y, duz(R ) (y2), then

the two belief functions associated with the credal measare the same.

4.3. CONJUNCTIVE COMBINATION RULE

The conjunctive combination rule is given by the followigbrem:

BR" BR" BR"
Theorem 4.2. Letul(R ) andug(]R ) be two credal measures. The credal meaw%z)

. . . L R"™ BR™ i
resulting from the conjunctive comblnatlon;oﬁ( ) andMQ( ) satisfies:

qf(g? (4) = qf@) (A)- gy () (A) (24)
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Proof. Let A be inB(En). We have:

A 4y ) () = /F i ) /F s () (25)

According to Fubini's theorem, we have:

g [ a ewad )
o - F224 (26)

= /F . /F Q;j (uf(Rn) ®uf(Rn))(y17yz)

Let f1102 pe a mapping such that:

B(R"
o2 hgy=hLxIh —F :ul(©2) (27)
y = (y1,92) — [T (1) N 2 (y2)
We have:
FeQ? = (Flax L) U (I x F2,) (28)
FAEQZF%AXF%A (29)
FiR?=FL, x F3, (30)

These sets belong tocaalgebra, sof 1 O 2 is an index function. Therefore we can build
B(R")
a credal measure, o, ; as:

uff? = ulf ") ® uf(ﬁn) (31)
Hence: o) HE)
91 p2 (A):/F.l@zdﬂl@Q (v) (32)
We obtain: o) o) o)
402 (A)=q (A) g5 (A) (33)
O

4.4. CONSONANT CREDAL MEASURES

Consonant credal measures are a particular case of credalimsj.e. credal measures
whose index functiong/; are bijections such that:

=S

1. ICR' HE)

— ]:(;L
y — [l (34)

=+
and y <y1 <= fL(n) C L), w2 €R
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I can then be used to rewrite Equations (20) to (22). For exaifghe index space is
a closed interval oR, i.e. I =0, Ymax|, We have:

— Ymax —
bel ™) (A) :/ dp™E") (y) with y; being the smallest element B 4(35)

Y1

pIBE) (4) = / !

0

i B (4) with y» being the biggest element #fi,4  (36)

o ys
&) (4) = / 4B (4) with y5 being the biggest elementi s  (37)
0

The conjunctive combination of two consonant credal messis not consonant, which
may be problem. A solution is to replace the credal measuteéigopignistic consonant
credal measure.

4.5. CONSONANT CREDAL MEASURE INDUCED BY A MULTIMODAL PDF

As stated previously, the approaches of Smets and Gatrah cannot deal with mul-
timodal pdfs as the focal elements need to be connectedhvidicot the case if they
are obtained by-cuts of a multimodal pdf. We apply here our approach basethen
index function and show that we can represent consonanalcmegbsures induced by a
multimodal pdf.

The pignistic transformation in the case of a credal meaisunitten for eachA €

B(R"):

Betp (4) = [ AANF W) ) e (38)

Fra A (fl(y))
In this case\ (B) is the Lebesgue’s measure of the hypervoluBaelement of3 (K”)
(we set0/0 = 1). Let Betf be a continuous pdf o@n. We will show that thex-cut of
Betf, fL.(«), define a consonant credal measu?@Rn) associated wittBet f .

Proposition4.3. Let Bet f be a continuous pdf. Among the belief functiongtgo( Bet P),
one has as focal elements thecuts of Bet f and as consonant credal measure the mea-

sure8®") such that:
dpB ) () = X (f1()) dA () (39)

Proof. Thea-cuts ofg, a continuous function frolR " to R+ are:
(@) ={z € R"|g (x) > a} (40)

F&, is an element of the Borel algebra. Indeed:

F&y # 0 = 3ams = inf {a € I|f(a)n A # 0}

. 41
= FébA = |ainf; amax] ( )
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Using a similar argument, we can prove the8’, and F$%, are elements of the Borel
algebra. Hence, we can define an index function usiagy:

Lo I=100,ama) — { 53(0;) o€ I} (42)

a — fes(a)

As the index functionf/, does not satisfy the relation given in (34), we need to invert
the upper and lower bounds of each integral used to competieetef, plausibility and
commonality functions.

We will use two different expressions &et P (fZ; («)) to compute the density of the

credal measure. Using the pignistic transformation, wehav

. I () — O AN (@) N fi ) BE")
B tP( cs( )) - /amax )\( C]S(y)) d,LL (y) (43)

Moreover, letv be the measure such that:

ML) = [ ) (44)
Then, -
BetP (fL(a)) :/ ydv (y) (45)
By differentiating these two expressions, we h"z;;e:
@) [ ) = adv (46)
Hence: o )
_ B(R"
o= [ s “n
By differentiating, we have:
) () = X (fL()) dA () (48)

O

Proposition 4.3 shows that we can build a consonant credasuane for any continuous
pdf, not only for simple modal distributions. Thereforeisthesult extends the existing
approaches.

Theorem 4.4. Among the set of belief functiom@so( Bet P), the belief function defined
by Equation(39)is the least committed one for the commonality ordering.

Proof. If (ff, MB(W)) € Also(BetP), we have by construction:

pl (En ~ fl(a)) —a- A (fl(a)) < betP (En ~ fl(a)) (49)
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The credal measure defined by proposition 4.3 leads us to p&auaibility function
which is equal to the upper bound of this inequality. We dedimat this is the least
committed one for the plausibility ordering. As this beliefiction is consonant, it is the
least committed one for the commonality ordering. O

We now can build the least committed belief functiorddfso( Bet P) when the asso-
ciated probability density function is continuous. Foradéte frames of discernment or in
some particular cases of continuous belief functions,kimd of result has already been
obtained [25].

4.6. EXAMPLES

We illustrate our results on two special cases, (1) a simples&ian pdf and (2) a mixture
of Gaussian pdfs, and build the corresponding consonadétneeasures.

Example 4.5(Gaussian pd). Let Bet f be the pdf of a Gaussian distribution. We define
Bet f~1 as the bijective inverse function &fet f restrained t®*. According to Theorem
4.4, Bet f~! induces a credal measure such that:

duBF) (@) =\ (fL (a))dX(a) =2Betf~!(a)dA(a) (50)
As o = Betf (), we have:
d) () = Betf' (z) d\ (z) = zBetf (z) d\ (z) (51)

Hence, according to Theorem 4.1, the credal megsuefined as:

diB®) (z) = 202 Bet f (z) d) (z) (52)
and the associated index function such tiigt) = [-x,z] describe the same belief
functionﬂB(Rn>. This is the result given by Smets in [25].

Theorem 4.1 and Proposition 4.3 can thus be used to build soocant credal measure
associated with a Gaussian pdf. Unfortunately, the amadptpression oBetP o f1
and) o fI are not always trivial and an alternative solution in thise#s to compute
a numerical approximation of (f.s («)). In the next example, we will illustrate this
approach and compute the numerical approximation of theéatraeasure induced by a
Gaussian mixture. The results will be then compared witketabtained in [3].

Example 4.6 (Gaussian mixture). In [3], Caronet al. give an expression of a bbd
induced by a Gaussian pdf @’ They build a bbd induced by a Gaussian mixtyire
>~ Bifi, such that the plausibility satisfigg = 3. 3;pl;. The resulting belief function
is isopignistic tof. However, its focal elements are not theuts of f but rather those of
fi- Thus, this method does not build the consonant belief fanéhduced byf. Hence
we do not obtain the least committed isopignistic beliefchion induced byf.

Let us consider the Gaussian mixture plotted in Figure 1. filmaerical approxima-
tions of BetP o fI, and X o fl, are plotted in Figure 2. As expected, the plausibility
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FIGURE 2. Study ofa-cuts.

obtained with proposition 4.3 is clearly higher than the obg&ined by the method de-
scribed in [3] and its shape is clearly differesft(Figure 3). We conclude that in pattern
recognition application, the method choosen to generaeplausibility function used
by the generalized Bayesian theorem [3, 18] will have an hpa the results. In [8],
the authors show that according the method used to genesigéfonctions, the results
of classification are not the same and that the method faligwhe least commitment
principle is the more cautious one.



TITLE WILL BE SET BY THE PUBLISHER 13

12

T T T T T T T
—Plausibility with the consonant belief function
- - -Plausibility with the method of Caron et al.

Plausibility of x

. L L L L L L L L
04%0 -8 -6 -4 -2 0 2 4 6 8 10

FIGURE 3. Comparison of plausibility functions.

5. OPTIMAL SEARCH THEORY WITH BELIEF FUNCTIONS

In a Search And Rescue (SAR) problem, algorithms are deeélamich aim at pro-
viding solutions to optimally allocate the search efforbimler to maximize the chances
of finding a lost object. The theory of probability is the titaahal theoretical framework
for modeling uncertainty. An approach using discrete éliactions has been devel-
oped in [7]. Due to its computational burden, this approdauid be restricted to small
environments with a restricted number of cells. In this pape suggest an alternative
modeling approach based on continuous belief functiongerAbme background on the
classical search theory, we will apply the approach dewop Section 4 to the search
and rescue problem. The objective is to demonstrate theesttef using continuous
belief functions to model and solve a SAR problem.

5.1. QLASSICAL APPROACH OF SEARCH THEORY

Let R be a search area. R is continuous, the distribution of the location of a search
object on a search space can be represented by a contindofidefined by [29]:

/' fi(@)de = B (53)
TER

whereg is a real number betweérandl1. A /5 value lower thar corresponds to a belief
that the search object is outside the search area with alpititpaf 1 — g. If the search
area is discrete, we have:
> POC(c)=8 (54)
ceER
where POC (c¢), is the probability that the search object is in the eglProbability of
Containmenjt
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Among the several ways to initialize this location probpidlistribution [1], one of
them consists in defining a Gaussian function centered ofagtknown point (LKP).
Some methods have been proposed to generate complex pitybEgontainment dis-
tributions, which use severatenariito define possibility areas [19]. The conditional
probability of detecting POD) the search object provided that it is in a given cell
(POD (c)) depends on several parameters such as the environmeatthent of search
effort, the kind of search object and the type of sensors.hBsacterize the ability of a
sensor to detect a target, we use the lateral range funétioin [29]. It corresponds to
the instantaneous probability that an object, located astantcer perpendicular to the
trajectory of the sensor, will be detectett. (Figure 4). The integration of this function
over the distance defines the sweep width:

W:2/Ood(r)dr (55)
0

In the discrete case, we consider that the sweep width is benemus over a given grid
cell W (¢)).

FIGURE 4. Area swept by the sensor.

A classical lateral range function ds[29]:

. [ 1 for 0<r<d
a(r){o for r>d (56)

with W = 2d (cf. Figure 4). When a sensor can be described with this law, wetcal
adefinite-range law sensoihere are several ways to measure the search effort [29]. It
can be defined by a trajectory length, the time spent in an #re&ost of a mission, etc.

In general, the effort is defined as the length of the patlofedld by the sensor. Letbe

this length,V be the speed of the sensor, thes V - T' with T" the time spent in an area.
The product ofz by W gives an idea of the surface covered by the sensor. Let tls@isen
follow a definite range lawcf. equation (56)), we can us¥ instead ofa () to compute

the POD defined by the exponential functiéras follows:

b(z)=1—exp(—zW/A) (57)
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The exponential detection function assumes a random sakmad the path of the sensor.
Following an unsuccessful search mission, B@C is usually updated based on the
Bayes' rule. Letn denote the discrete time indexthe cell number, we then have:

_ POC,_1(c) - (1= POD, (¢))

POCy (<) 1- POS

(58)

wherePOS is theProbability of Succesdefined in Equation (59). The resultid¢OC,,

is not necessarily normalized. In this case, instead o§teduting thePOC on the whole
search area, we assume that the search object is outsideattoh sirrea. This results in a
lower g value.

5.1.1. Search planning

To optimally plan a mission, the available eff@tmust be distributed over the search
area in a way that maximizes a performance criterion. Oftgény§e try to maximize the
probability of finding the search objecP(0S). For one step of planning, we maximize
(in this equation, we assume continuous space):

POS= [ fi(2)b(¢(x))de
(59)
& (x)dx

TER
with =2 = j
TER

where¢ (x) is the amount of effort applied an Several methods have been proposed to
distribute the effort over the search area, depending ofiixad constraints [28]. If we
assume that the effort is continuous and infinitely divisjland that the search object is
stationary, de Guenin [4] proved that for a given amount fafrefthe PO S is maximized
if for all x of R we have:
fi(@) b (§(z)) = A (60)

whereb’ is the derivative irf of b and\ is a constant. Therefore, for a fixadby inverting
b’, we can find the allocation @f, maximizing thePOS on the search area for a global
amount of fixed effort. Then we ha®, = fxER &\ (z) dz. The optimization problem is
now transformed. Our aim is to find thewhich verifies=, = =.

There are many extensions to this optimal search problemf@asction of the type of
search objects (moving targets, ...), the type of sensets¢tion law, false alarm rate, ...)
and the problem constraints [2, 28].

5.2. BELIEF FUNCTION APPROACH TO THE SEARCH PROBLEM

To model the optimal search problem within the theory ofdfdlinctions, we use the
distributions of probability previously defined. Hence, thve to consider two frames
of discernmentR, a subset oﬁQ, corresponds to the continuous search arealanrd
{d,E}, corresponds to the events “detection” or “no detectior’ d€scribe the location
of the lost object, we useZ®, ., a credal measure. It can be the one related to the least
committed belief function induced by the probability of temment. We denote the set
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of the focal elements of this belief function B, = {Ile, thee-cuts of f;}. Moreover,
we consider that the effort is split on a partition®f P; = {I1;,« < n € N}. Hence,
the probability to detect a lost object @hgiven that the object is there and given the

effort allocated on the search areaA® D(II) = Z <|Hj;|H|POD (HZ—)). Using
II;NIT

the least commitment principle with the commonality ordgriwe obtainu®,, ,, [I1], the

belief function induced by?O D(IT), describes our belief in the detection event

max (0,2 - POD(II) — 1) if A=d (61)

min (2 POD(II),2 (1 — POD(I))) if A=D
ppop M (A) = {

max (0,1 —2- POD(II)) if A=d

To model the chance of finding the object after a search nmissi@ consider the
following belief function generated by the two previousdsrof belief functions:

0P (1R 1Bop [T (4) = / 1o [Me] (A) diBoc () (62)
FCR

Hence, the objective of the search plan is to split the effof®; in order to maximize the
pignistic probability of finding the lost object. This opfimation problem is the same as
the one traditionally defined in probabilistic case, anddeeme can use the de Guenin’s
algorithm [4] to find a solution.

After a search campaign, we can updatg, . The first thing is to model the infor-
mation transmitted by a sensor when the mission completd®uti detection. The aim
is to be able to definpl%,,, [d] (II). In order to have a consonant belief function, we
define:

PlFop [d] (1) = maxplFop [d] (@) = max plFop [d] (1) (63)

According to the maximum likelihood principle, we have fdird; in the search area:

plrop [d] (IL) = plpop [11] (d) (64)

To update the belief on the search object’s location, we ¢oethe belief functions with
the conjunctive rule:

qgoc' [3, NPOC] (ID) = ngD [E] (I1) - qgoc (1T) (65)

We note that when th&OD is smaller thar0.5, the plausibility sent by the sensor is
equal tol with no impact on the update of the commonality.

Example 5.1(The POC is a mixture of Gaussian. We assume that the probability of
containment is represented by a mixture of two Gaussiartifumecorresponding to two
possible LKP. Based on the results presented by Carah in [3], we can build a bbd
associated with th& OC. We build also the least committed belief function inducgd b

SFor the sake of simplicity, we set for aflin I, the index space, that® [X] (y) = u [X] (f(»)).
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the POC (cf. Figures 5). A first problem occurs with the Caron’s methodfaket, some
locations for the lost object are more probable than othesphowever this ordering is
not keept with the plausibility function induced by Caromisthod. This does not happen
when we use the least committed one.

S
it i
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“,\ T
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i
R
it
|‘I‘I“‘|\|\I\lnnu11un i

(a) Probability of containment. (b) Plausibility of containment (Caron’s method).
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(c) Plausibility of containment (the least commit-
ted one).

FIGURE 5. Location of the lost object.

We assume that the sweep width is the same for all the seagels.akVe decide to
use the detection model describe by the equation (57). Heweean compute for the
probabilistic and the belief functions approaches thenagitallocations of effort in order
to maximize the chance of finding the lost objetft {igures 6). We remark thatin the case
of Caron’s method, the effort is focused on a place wheredsisdbject does not seem to
be. When we use the least committed belief functions, thartaf allocated on a larger
areatf. figures 6). It is because we consider that the source of irdtiam is subjective.
Hence, it is weakened by representing likelihoods on seteau of singletons.

We then update the information about the location of thedbgtct in the two frame-
works (cf. figures 7). We observe that the area where the informationtahe location
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(a) Allocation of effort with probabilities. (b) Allocation of effort with Caron’s method.

I

(c) Allocation of effort with the least committed
belief functions.

FIGURE 6. Allocation of effort.

of the lost object is updated is smaller in the case of thegidlity. It is because in our
approach with the belief functions, we do not update therm&tion about the location if
the probability of detection is smaller tharb.

CONCLUSIONS

In this paper, we have extended the approach proposed iB1Pf describe complex
focal elements. With this extended model, it is possiblentduce a consonant belief
function from a multimodal continuous pdf. Such a tool akous to make the same
operations with the framework of belief functions and thenfework of probabilities.
One example is the study of a SAR case. We remark that basdtedretief functions
approach, we have a powerful way to merge information frowerse sources on the
location of the search object. This may be used in the confesg¢arches where several
drones are used (for example [32]). Recently, some stuBi&s3[L] have addressed the
performance measures of sensors in a SAR context. We cdwddrito account these
results into the framework belief functions.
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(b) Update of plausibility with Caron’s method.

(c) Update of plausibility with the least committed
belief functions.

FIGURE 7. Location of the lost object.
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