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Abstract – In a lot of operational situations, we have to
deal with uncertain and inaccurate information. The theory
of belief functions is a mathematical framework useful to
handle this kind of imperfection. However, in most of the
cases, uncertain data are modeled with a distribution of
probability. We present in this paper different principles to
induce belief functions from probabilities. Hence, we decide
to use these functions in a pattern recognition problem. We
discuss about the results we obtain according the way we
generate the belief function. To illustrate our work, it will
be applied to seabed characterization.
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1 Introduction
The theory of belief functions [3, 4, 19] is a powerful
formalism to describe the imperfections of data given by
an information’s source. It is widely used in classification
to merge the decisions coming from several classifiers [15].
Recently, some works deal with the question of represen-
tation of belief functions on real numbers [25, 14, 18, 24].
They give us the opportunity to use directly the framework
of belief functions with raw data coming from sensors.
In this paper, we will focus on the way that belief func-
tions have been modeled in [6]. It allows us to induce belief
functions from probabilities. According to the nature of the
source of information, the appropriate way to construct be-
lief is not the same. To illustrate this phenomenon, we will
use the work presented in [18, 10] and compare the classifi-
cation result of seabed’s sediments according the modeling
of information.
This paper is organized as follow. In the section 2, we
present the framework proposed in [7] to model belief func-
tion on real number and we recall different ways to induce
belief functions from probabilities [6]. In the following sec-
tion, we applied these functions to pattern recognition using
a reasoning similar to the one found in [18].

2 Beliefs induced by probabilities
The theory of belief functions is a framework richer than the
theory of probability. It allows us to represent information
in a finnier way. In this section, we present an approach
of belief functions on real numbers and some principles to
induce belief functions from probabilities.

2.1 Belief on real numbers
In [24], Ph. Smets works on continuous belief functions on
real numbers. He proposes to put basic belief assignement
only on the intervals of R = R ∪ {−∞,∞}. With this
assumption, he had an efficient way to describe all the fo-
cal elements and made a link between belief functions on R
and probability density functions on R2 using the concept
of basic belief densities. However, this framework is quite
restrictive and for some applications, we need to express be-
liefs on more complex sets. In [7], the authors explicit an
index function to scan F , the set of all focal elements of a
belief function on Ω, using a set I , the index space:

f I : I −→ F
y 7−→ f I(y)

(1)

Hence, a credal measure µΩ is a positive measure such as∫
I

dµΩ(y) ≤ 1 and a credal space is defined by the brace(
f I , µΩ

)
. In order to compute belief functions, we need to

define for all A in P (Ω) (a family of subset of Ω):

F⊆A = {y ∈ I|f I(y) ⊆ A} (2)

F∩A = {y ∈ I|
(
f I(y) ∩A

)
6= ∅} (3)

F⊇A = {y ∈ I|A ⊆ f I(y)} (4)

It can be used to model a belief on Borel algebra B
(
R

n
)

.

If F⊇A, F⊆A, F∩A belong to B(I) for all A in B
(
R

n
)

, we
define:

• The belief function:

belΩ(A) =

∫
F⊆A

dµΩ(y) (5)



• The plausibility function:

plΩ(A) =

∫
F∩A

dµΩ(y) (6)

• The communality function:

qΩ(A) =

∫
F⊇A

dµΩ(y) (7)

In this framework, we define some basic tools. Let
(
f I1 , µ

Ω
1

)
and

(
f I2 , µ

Ω
2

)
be two credal spaces. Let combine them

thanks to the conjonctive rule of combination [21]. We ob-
tain the credal space

(
f I1 ∩© 2, µ

Ω
1 ∩© 2

)
[7] such as:

qΩ
1 ∩© 2(A) = qΩ

1 (A) · qΩ
2 (A) (8)

There are other ways to combine informations within the
theory of belief functions. One of them is the cautious
rule [13] used to combine correlated sources of information.
Let f I1 and f I2 be two index functions linked to the credal
measures µΩ

1 et µΩ
2 . Let ϕ be a change of variables such

as ϕ (y1) = y2 implies f I1 (y1) = f I2 (y2). The braces(
f I1 , µΩ

1

)
and

(
f I2 , µΩ

2

)
represent the same belief if [7]:

dµΩ
1 (y1) = |det (ϕ′ (y1))| dµΩ

2 (ϕ (y1)) (9)

Within this framework, we will study a particular type of
belief functions, the consonant ones.

Example: Consonant belief functions. A belief func-
tion whose the focal elements are nested is a consonant
belief function. This allows us to create a total ordering
on F linked to the ⊆ relation. Hence, we can define an
index function f from I , a subset of R+, to F such as
(y ≥ x) =⇒ (f (y) ⊆ f (x)) [24]. The α-cuts of g, a con-
tinuous function from R

n
to g

(
R

n
)

= I ⊂ R+ are the set
such as:

f Ics(α) = {x ∈ Rn|g (x) ≥ α} (10)

We have the property that F cs
⊆A is an element of Borel alge-

bra. Indeed:

F cs
⊆A 6= ∅ ⇒ ∃αinf = inf

{
α ∈ I|f Ics(α) ∩A 6= ∅

}
⇒ F cs

⊆A = |αinf , αmax]
(11)

Using a similar argument, we can prove that F cs
⊇A and F cs

∩A
are elements of Borel algebra. Hence, we can define the
index function:

f Ics : I = [0, αmax] −→
{
f Ics(α) |α ∈ I

}
α 7−→ f Ics(α)

(12)

If we consider a probability measure µR
n

on I, we obtain a
credal space

(
f Ics, µ

R
n
)

.

Within this framework, we can build belief functions on real
number with complex focal sets. In most of the cases, in-
formation of a source on real number is represented with a
probability distribution. Hence, the problem is to find some
criteria to build belief functions induced by a probability.

2.2 Isopignistic set and minimal commitment

2.2.1 Pignistic transformation
In most of the cases, imperfect knowledge is modeled
with probability. Unfortunately, this framework is not suit-
able to represent phenomenons such as ignorance or uncer-
tainty [23]. Therefore, we want to associate a belief function
to a probability. There are operations to derivate a proba-
bility from a belief function. One of them is the pignistic
transformation. Ph. Smets [20] has given a justication of
this transformation in the transferable belief model. He pro-
poses to use it in order to take decision on singletons. We
propose to describe this transformation with the equation:

BetP (A) =

∫
F∩A

ν (A, y)

ν (f I(y) , y)
dµΩ(y) (13)

If we work on a discrete frame of discernement, ν (A, y)
gives the cardinality of A ∩ f I(y). We define on real num-
bers:

ν (A, y) = λ
(
A ∩ f I(y)

)
+ω (A, y) · δ

(
λ
(
f I (y)

))
(14)

where λ is the Lebesgue measure, δ is the Dirac measure
and ω (A, y) is a number in [0, 1] used to split the basic be-
lief assignement of the focal elements on singletons of Ω. It
is equal to 1 if f I(y) ⊆ A and 0 if A ∩ f I(y) = ∅. Gen-
erally, we have ω (A, y) + ω

(
{A, y

)
= 1 1. The opposite

operation is quite more complexe. We will present several
approaches of this problem according the context. The aim
is to associate a belief function to a probability according
the type of source which delivers the probability.

2.2.2 Least commitment principle
In the theory of belief functions, the minimal commitment
principle is frequently used [12, 9]. The idea is quite sim-
ple. To choose a belief function among a set of belief func-
tions and when there is no reason to prefer one to another,
we have to choose the least informative one. That assumes
there is an ordering to decide which one is the least informa-
tive. One ordering commonly used is funded on the commu-
nality function. Indeed, we can consider that communality
function is a way to measure the non specificity of a belief
function and that this function is linked to the conditioning
process [24]. It is an interesting criterion if we know that a
posteriori information will be use in the fusion process. Let
assume that a source of information delivers a continuous
probability density function Betf , but that this probability
is induced by a bet. That implies this kind of data comes
from a subjective point of view. We note BIso(BetP ),
the set of belief functions whose the pignistic transforma-
tion gives BetP . There is a belief function [7] belonging
to BIso(BetP ) whose the focal elements are the α-cuts of
Betf and the credal measure µB(R

n) is such as:

dµB(R
n) (α) = λ

(
f Ics(α)

)
dλ (α) (15)

1{A is the set such as {A ∩ A = ∅ and A ∪ {A is the frame of dis-
cernement.



Theorem 2.1 Among the set of belief functions
BIso(BetP ), the belief function defined by equation
(15) is the least committed one for the communality
ordering.

We can build the least committed belief function linked to
BIso(BetP ) when the associated probability density func-
tion is continuous. For discret frames of discernement or in
particular cases of continuous belief functions, this kind of
result has already been obtained [24]. When an expert mod-
elizes a phenomenom with a probability density function,
we can use this transformation to combine a belief function
with a given distribution of probability. Indeed, we assume
that the opinion of an expert is quite subjective.

λ(fcs(α1))

dλ(α1)

α2

0

dν(α2)

α1

λ(fcs(α))=ν([α,αmax])

αmax

λ(fcs(α)) dλ(α)
α dν(α)

Figure 1: Two different ways to build belief functions
from a probability density function Betf . We remark that
λ
(
f Ics(α)

)
refers to the volume of an α-cut and that dV (α)

corresponds to the variation of the volume for a given α. The
green and blue areas symbolize the infinitesimal quantity we
have to integrate in order to compute the belief functions.

2.3 Maximum of necessity
When we work with an “objective” source of informa-

tion, we can apply the principle of maximum of necessity.
This principle comes from the theory of possibility [16].
The idea is to work with the most informative distribu-
tion of possibility (for the necessity ordering) which fulfils
the following assumptions. The first one is that the pos-
sibility dominate the probability, i.e. for all A measurable
Π (A) ≥ P (A). The second one is that the ordering must be
kept, i.e. P (A) ≥ P (A′)⇔ Π (A) ≥ Π (A′). These con-
ditions can be transposed in the framework of belief func-
tions by setting that the plausibility function is equal to the
possibility and the necessity is equal to the belief function if

we work with a consonant belief function [8]. Finding a be-
lief function which verifies these properties is equivalent to
find a nested focal sets family such as for all A belonging to
this family, A is the smallest set (for the inclusion ordering)
such as P (A) = β. This sets family corresponds to the con-
fidence sets in theory of probability. If we have as input a
continuous probability density function Betf , the focal sets
can be described with the α-cuts of this function. We ob-
tain a belief function defined by

(
f Ics, µ

B(Rn)
)

such as if we
adapt the result obtained in [16]:

plB(R
n) (x) = 1−BetP

(
f Ics(Betf (x))

)
(16)

i.e.:
dµB(R

n) (α) = αdV (α) (17)

with V ([α, αmax]) = λ
(
f Ics(α)

)
(cf. figure 1).

3 Application to recognition
To illustrate the benefit of using belief functions to make
classification with data sensor’s, we compare the result ob-
tain in a probabilistic case and in belief functions cases.

3.1 Decision making
In [2], the authors decide to use credal inference in order
to deal with the lack of information in sensor context. In
our study, we prefer to keep the framework of the gen-
eral Bayesian theorem (GTB) [22, 17] because it fulfills
the least commitment principle within the transferable be-
lief model. For the sake of simplicity, we set for all y in I
that µT [X] (y) = µT [X] (f(y)). If we have the a posteri-
ori information that the value of the parameter is in X , we
have according the GTB for all A included in T :

µT[X](A)=
∏
Ti∈A

plB(R
n)[Ti](X)

∏
Ti∈A

(
1−plB(R

n)[Ti](X)
)

(18)
In order to take a decision on singletons, we can use the
pignistic transformation. Hence, we have:

BetP (Ti) =

∫
F∩Ti

ν
(
Ti ∩ f I(y)

)
ν (f I(y))

dµT [X] (y) (19)

To illustrate, we use two different mixtures of 2 Gaussians.
Firstly, according the method, we generate the belief func-
tions induced by these mixtures (cf. figure 2). Hence, we
suppose that there is two kinds of object whose a parame-
ter could be describe by the pdf print figure 2. We use the
method describes in [18] to decide, knowing the parameter,
the type of object observed. As we can see (cf. figure 3), the
consonant belief function obtained thanks to the maximum
of necessity principle amplifies the decision of probability
when the least commitment principle moderate this result.
However, in this case, we observe that the belief function
induce by Caron’s method [1] inverses for some values of
the parameter the decision which is taken in the probabilis-
tic case.
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Figure 2: Different belief functions induced by two proba-
bility density functions.
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Figure 3: Decisions according the framework.

3.2 Sediments characterization
The aim of this part is to compare automatic recognition re-
sults obtained by a Bayesian probabilist approach [26] and
by several different belief functions approaches.

3.2.1 Presentation of data

Figure 4: A sample of sonar images.

(a) ripple (b) sand (c) rock

(d) cobble (e) silt

Table 1: Examples of tiles.

We use a data base of 42 images from a Klein 5400 sonar
given by the GESMA (Groupe d’Études Sous-Marines de
l’Atlantique) [15] (cf. image 4). A pre-processing have been
done in order to reduce the speckle and the variation of gain
in the images. An expert has labeled the images to indicate
the type of sediments seen. He distinguishes five kinds of
sediments: rock, cobble, ripple, sand, and silt (cf. table 1).
In order to use an automatic classifier, we divide the images



in tiles of 32 × 32 pixels. To characterize a sediment thank
to the tiles, we compute six parameters [11]: the homogene-
ity, the entropy, the contrast, the correlation, the direction-
ality and the uniformity. A learning set help us to construct
a mixture of five Gaussian curves linked to each class and
parameters thanks to the EM algorithm [5].

3.2.2 Result
In [10], belief functions approach using Caron’s method
to generate belief function has already been developed to
recognize seabed sediments. However, the belief func-
tions describe in section 2 are quite different from this one.
Hence, we decide to compare the results obtained by using
belief functions induced by Caron’s method with the ones
obtained when we use the belief functions build by apply-
ing the least commitment principle and the maximum of ne-
cessity principle. This test is done with Gaussian mixtures
computed using EM algorithm applied on data set of differ-
ent sizes. Hence, the reliability of the Gaussian mixtures
increases with the size of the learning data set. We observe
(cf. figure 5) that the method which derives from the max-
imum of necessity emphases the behavior we have with the
Bayesian probability approach when the methods funded on
the least commitment principle and the Caron’s approach
reduce this phenomenon. Hence, when we lack of informa-
tion, these methods seem to be best-suited.
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Figure 5: Rates of good recognition according the sample
set size.

4 Conclusion
The recent advances in theory of belief functions, espe-
cially about beliefs on real numbers, provide us tools to
estimate and merge continuous parameters. It allows us to
use belief functions directly with raw data issued from sen-
sors. Thanks to these breakthroughs, the framework of be-
lief functions is a match for the theory of probabilities. It is
even possible to take into account phenomenons we cannot
handle with the probabilities as the ignorance. It has a great
consequence when we have to take decision using sensor’s

data, especially in an uncertain context and when we lack of
prior information about the environment. However, we have
to be careful when we generate a belief functions to model
a source of information. Indeed, according the way we con-
sider the source, the method used to build the belief function
will not be the same. The method funded on the maximum
of necessity confirms the information contained by a proba-
bility when the principle of least commitment or the Caron’s
method discounts it. Hence, when we use these functions
to make seabed characterization, we observe that the good
classification rates depends on the size of the learning set.
When the size of the learning set is small, the least com-
mitted belief function gives the best results. However, the
bigger the learning set is, the better the results for Bayesian
and maximum of necessity principle methods are.
Even if the result we have obtained are encouraging. There
is still a lot of works left. A first step is to find an efficient
way to compute the least committed belief function induced
by a probability density function. Another step would be to
propose combination rule in order to keep a consonant be-
lief function when we combine two consonant belief func-
tions. Ending, we could use this framework and these tools
to make multi-sensor’s data fusion.
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