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Abstract – The automatic sea-bottom characterization is 
a difficult problem. The most of automatic 
characterization approaches are based on texture 
analysis. Indeed, the sonar sea-bottom images present 
many homogeneous areas of sediment that can be seen 
like a sonar texture. However, texture characterization 
approaches allow different results according to the kind 
of texture. In order to improve the sediment 
classification, we propose to use two information fusion 
approaches coming from the evidence theory. One 
estimate the belief function with a probabilistic point of 
view (decision level), the other one with a distance 
approach (characteristic level). 
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characteristic fusion. 
 
1  Introduction 
The sea-bottom characterization is a difficult 
problem. The automatic characterization 
approaches are based on texture analysis; the sonar 
sea-bottom images present homogeneous or not part 
of sediment that can be seen like a sonar texture [1]. 
The state of art presents many techniques for 
texture analysis and the choice of one or more of 
them depends, the most of time, of the kind of 
images and the application. From these techniques a 
reduce number of relevant feature is calculated in 
order to classify the images in one or more 
sediment types.  

In this paper, in order to outperform the sea-
bottom characterization, we propose to fuse the data 
at the level of the characteristics (i.e. the numerical 
outputs of the classifiers) or at the level of the 
classification results (i.e. at the level of the 
decisions of the classifiers). 

To do this, we follow the process schema 
presented in Fig. 1. We present the database of 
sonar images in section 5. We consider four 
methods for texture characterization: the co-
occurrence matrices, the run-lengths matrices, a 
wavelet transform describe in [2] and Gabor filters, 
presented in section 2. A neuronal network is used 
to classify extracted features into each methods of 
texture characterization (see section 3). Results 
obtained with each approach are different: the run-

lengths method provides the worst classification 
rate whereas the co-occurrence matrices provide the 
best global classification rate. But the results are 
also different according to the type of sediments. 
Indeed, for example, the co-occurrence matrices 
technique is not invariant in rotation: the ripple 
sediment is misclassified. The wavelet transform 
and Gabor filters studied techniques are invariant in 
rotation, but provide on isotropic texture 
classification rates weaker than the co-occurrence 
matrices.  
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Fig. 1. Process schema. 

 
The interest of information fusion is to take into 

account the imperfections of the considered 
techniques in order to perform classification rates. 
We propose to study some approaches coming from 
the evidence theory, estimating the belief function 
based on a probabilistic point of view, and based on 
distance, applied respectively for the decision 
fusion (i.e. the decisions of each classifier, noted 
Ckq on Fig; 1) and for the characteristic fusion (i.e. 
the outputs of each classifier, noted ok on Fig; 1). 
We present these both approaches in section 4.  

Experimental results are given in section 6. 
 
2  Feature Extraction 
Following the process presented on Fig. 1, four 
common texture characterization approaches are 
used. We recall here their principle in [2] and [3]. 
 
 



2 .1 Co-occurrence matrices 
The co-occurrence matrices are calculated, by 
numbering the occurrence of identical grey level of 
two pixels. We consider here four directions: 0°, 
45°, 90° and 135°. In theses four directions, six 
parameters given by Haralick [4] are calculated.  

The first parameter characterize the homogeneity: 
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where gn  is the number of grey levels and c i  
is the estimation of the probability of transition of 
the pixel i to the pixel j in the direction d.  
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Contrast estimation is given by: 
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The entropy is estimated by: 
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The correlation is given by: 
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where mx and my describe the mean on rows and 
columns of cd respectively, and xσ  and yσ  are the 
standard deviations. The directivity is given by: 
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and the uniformity by: 
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This classical approach allows parameters. The 
problem of the co-occurrence matrices is the non-
invariance in translation. Typically, the problem 
can appear for the ripple texture characterization. 
 
2.2 Run-lengths method 
 
The run-lengths matrix is obtained by counting 
consecutive pixels with the same grey level in the 
four previous directions. Hence a matrix 

 is obtained, where  is the 
number of run lengths j of the pixels with a grey 

level i in the direction d. So the number of run 
lengths is given by: 
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Then five parameters are extracted from the four 
directional matrices. The first one is the proportion 
of small run-lengths given by: 
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The second one is the proportion of big run-lengths 
given by: 
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The run dispersion between the grey levels is given 
by: 
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and the run dispersion between the lengths is: 
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We can also use the length percentage LN
N

 where 

N represents the number of pixels. 
This method is well suited in the case of optical 

image for example, where no speckle is present. 
Anyway, in the case of sonar images, we have to 
remove first the speckle or adapt the parameter 
calculation. However, we keep this approach in 
order to study the effect of a bad extraction of 
texture features.  
 
2 .3 Wavelet transform 
The both previous approaches do not consider the 
translation invariance in the directions. The discrete 
translation invariant wavelet transform is based on 
the choice of the optimal translation for each 
decomposition level [2]. Each decomposition level 
d gives four new images. We choose here a 
decomposition level d=3. For each image i

dI  (the ith 
image of the decomposition d) we calculate three 
parameters. The energy is given by: 
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where N and M are respectively the number of 
pixels on the rows, and on the columns. The 
entropy is estimated by: 
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and the mean is given by: 
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So we obtain 63 wavelet features (3+4*3+16*3). 
 
2 .4 Gabor filters 
The impulsionnal response of the Gabor filter is 
given by: 
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where  is the radial frequency of the filter, 0u xσ  
and yσ  are the standard deviations, ϕ  is the phase, 

0 0 )( ,x y  corresponds to the point where the 
Gaussian is maximum, and where:  
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and θ  is the rotation angle. We consider five 
different frequencies and six directions, that is 30 
filters are designed. Then we calculate four 
parameters as in [3]. The first one is the maximum 
value of the matrix numbers normalized by the 
mean, which represents the maximum value of the 
standard deviation with the considered sediment. 
The mean of all points of the matrix is also 
calculated. The third parameter represents the mean 
on the horizontal directions only (pings directions) 
normalized by the global mean. The last one is the 
global standard deviation before filtering.  
 
This approach takes the translation invariant on the 
directions into account. 
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 Multilayer perceptron classifier  
The multilayer perceptron (MLP) is a feed-forward 
fully connected neural network [5, 6]. 

The data x is described by n parameters (x1, …, 
xn). Each unit of the network is an artificial neuron 
(perceptron) with the structure shown on Fig 2.  
 All the unit outputs of each layer are connected to 
all the unit inputs of the next layer weighted by the 
values wlj, where l is the source unit and j is the 
target unit. These weights are initialized with small 

random values and they reach stable values after the 
learning process if it converges.  
 

 
Fig. 2. Artificial neuron structure. 

 
The learning process consists in repeated 
presentations of the training vector and of the 
corresponding desired output vector to the network. 
The objective of the learning process is to minimize 
the quadratic error: 
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where oj represent the real output of the unit j of the 
last layer. 
 If the sigmoid function shown on Fig. 2 is used 
then the following learning algorithm is obtained: 
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The constant c controls the slope of the sigmoid 
function and η stands for the learning rate. 

This rule is known as the back propagation 
algorithm or the generalized delta rule. Its 
convergence can be improved if a momentum term 
is added and if the learning rate is tuned in an 
appropriate manner [6].  
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 Fusion models 
The evidence theory allows for a representation of 
both imprecision and uncertainty through two 
functions: plausibility and belief [7, 8]. Both 
functions are derived from a mass function defined 
on each subset of the space of discernment D={C1, 
…, Cm} onto [0,1], such that: 
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where m(.) represents the mass function.  

The first difficulty is the choice of a mass 
function. There are two types of approaches: one 
based on a probabilistic model [8] and another one 
based on distance transformation [9]. Appriou [8] 



proposes two equivalent models based on three 
axioms. The first one that we use in this article is 
given by: 
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where qi is the ith classifier (supposed cognitively 
independent), 1,i N= , αij are reliability 
coefficients on each classifier i for each class 

1,j =
(m

j

=

m

i

 (in our application αij=1), and 
. Hence a mass function is 

defined for each source and each class. In this 
approach, the difficulty is the estimation of the 
probabilities 

1

,
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( / )j ip q C . In the case of decision 
level jq  is the class given by the classifier j. Hence 
the estimation of these probabilities can be made on 
a learning database by the confusion matrices. In 
the case of characteristic level, the estimation can 
be made classically by the frequencies or under 
assumption of the distribution of theses 
probabilities. For this level the distance approach is 
easier. 

Indeed, in [9] the mass functions are defined by: 
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where  is a set of learning vector, 

 is a distance (to be determined) 
between  and  and C  is the class of . 
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Many functions can be used, in [9] Denoeux 
proposes: 
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where iν  is a positive parameter according to the 
class . We will use this function. The distance 
calculation  can take time if the 
training database is important. But we can consider 
only the k nearest neighbors.  
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The fundamental difference between the both 
approaches is that in the first case we have to 
estimate the probabilities ( /j ip q C  and in the 

second case the distance d. For decision level the 
estimation of ( / )j ip q C  is very easy, but it is quite 
difficult to choose an appropriate distance in this 
case (symbolic distance). On the contrary, for 
characteristic level, the estimation of ( / )j ip q C  can 
be difficult if the distribution is unknown, and 
Euclidian distance, for example, can be choose for 
d. In this paper, we will apply the probabilistic 
approach for decision level (i.e. Ckq outputs of the 
MLP), and the distance approach for characteristic 
level (i.e. ok outputs of the MLP). 
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Combination of mass functions is based on the 

orthogonal Dempster-Shafer’s rule: 
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In the case of distance approach, this combination 
is given by:  
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with L a normalized constant, Ik,r the set of the 
neighbors of x in the class Ci. 
 
Other conjunctive rules are proposed: the 
Dempster-Shafer’s rule normalized by a conflict 
measure given by: 
 

( ) 1i i
B B

m= <  (24) 

 
 The Yager’s rule [10] redefines m(D) adding K. 
In this article, we choose the Smets’s rule [11] that 
supposes an “open world”, for each A of 2D: 
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 These rules give similar results on our data. The 
last step of fusion is the decision. In the evidence 
theory, we can use the maximum of plausibility, 
maximum of belief or maximum of pignistic 
probability [11]. We retain the maximum of 
pignistic probability in this article; the three 
previous criteria give the same results on our data. 
 
 



5 Database 
 
The database contains 26 sonar images provided by 
the GESMA (Groupe d’Etudes Sous-Marine de 
l’Atlantique). Theses images were obtained with a 
Klein 5400 sonar with a resolution of 20 until 30 
cm in azimuth and 3 cm in range. The sea-bottom 
deep was between 15 m and 40 m. 
These 26 sonar images have been segmented in 
small-images with a size of 64x384 pixels (i.e. of 
approximately 1152 cmx1152 cm). On Fig. 3 we 
show a sample of these small-images represented in 
order to obtain a size of 64x64 pixels.  
 

   
Sand Ripple Rock 

   
Sand and 

rock 
Cobble Ripple and 

sand 
Fig. 3. Sample of small-images with different type 

of sediment. 
 

Each small-image is characterized manually by 
the type of sediment (rock, cobbles, sand, ripple, 
silt) or shadow when the information is unknown 
(see Tab. 1). Moreover the existence of more than 
one kind of sediment on the small-image is 
indicated. In this case the type of sediment affected 
to the small-image is the most present.  

From Tab. 1 we note that the sand sediment is the 
most represented one. The cobbles sediment is 
particularly few represented. One of the difficulties 
of classification step comes from this difference. 
 

Sediment Effective % 
Rock 915 21.35 
Cobbles 33 0.77 
Sand 2321 54.62 
Ripple 374 8.80 
Silt 234 5.50 
Shadow 102 2.40 
Total 4249 100.00 

Tab. 1. Database elements and their effective. 
 
There is 39.7% of small-image with more than 

one kind of sediment (named patch-worked 
images). 

Note that such database is quite difficult to 
realize. Indeed, the expert has a subjective 
experience, and can make a mistake for some 
small-images. 
 
 
 

6 Experimental results 
 
The database was randomly divided into three parts. 
The first one is used for the neural network 
learning, the second one for the fusion process 
learning, and the last one for the tests. We repeat 
this random division 10 times in order to achieve a 
good estimator of the classification rate, and we 
analyze the mean percentage of good classification 
rates defined as the number of good classified 
small-images on the total of small images (Tab. 2).  
 
cooc run wave Gabor MLP Proba Dist 
70.0 50.3 68.9 66.4 50.0 68.8 79.5

Tab. 2. Classification performances ( % 2 ). .5%±
 

This table shows that the two fusion approaches 
(Probability based and Distance based) give the 
best results, and are robust to a bad extraction 
texture (here run-lengths method), whereas the 
global multilayer perceptron (MLP) classifying 
directly all the calculated extraction characteristics 
is not robust. However the probability based 
approach performances are not better than co-
occurrence matrices or wavelet methods added with 
a MLP. We can note that the distance based fusion 
approach gives significantly the best results.  
Tab. 3 details the results of this approach.  
 

Rock 87.3 
Cobbles 0.9 
Sand 84.9 
Ripple 61.3 
Silt 4.9 
Shadow 71.5 
No patch-worked 91.3 
Patch-worked 63.1 

Tab. 3. Detailed classification rates (%). 
 
We note that the best performances are obtained for 
the rock and sand classes; this is due to the 
multilayer perceptron learning better for the more 
numerous type of sediment. The cobbles and silt 
sediment allow bad results because of the effective 
low of cobbles and silt images in the database. We 
notice also that the patch-worked small-images are 
not good classified (63.1%). This is due to the 
database constitution.  
 
7  Conclusion 
We have proposed here a comparison of two 
classifier fusion approaches applied to a sea-bottom 
characterization. Both methods are based on the 
evidence theory. The belief function estimation is 
based on probability for one fusion approach and on 
distance for the other one.  
The both approaches are robust to bad texture 
extraction, whereas the used global multilayer 
perceptron is not. The based distance one allows a 
significantly improvement. An important problem 



for a multilayer perceptron classifier comes from 
the effective difference of the kind of sediments on 
our database. The learning for the type of sediment 
few represented is bad.  
Another problem is the patch-worked small-images. 
We are working on the realization of a new 
repartition of the data with a previous manual 
segmentation of the sediment. 
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