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Abstract — Several types of classifiers have been developed in
order to extract the information for the automatic target
recognition (ATR). We have noted that these performances are
different according to the classifier and the radar target. We
propose in this article three approaches of information fusion in
order to outperform three radar target classifiers. These three
techniques of fusion are the Sugeno’s fuzzy integral, the
possibility theory and the Dempster-Shafer theory. In this
application, we show that the best performance is achieved by
the Dempster-Shafer theory.

Keywords: ATR, information fusion, fuzzy integral, possibility
theory, Dempster-Shafer theory.

1 Introduction

The high resolution radar range profiles are often used for
the automatic target recognition (ATR) [1,2,3]. A range
profile of a target can be regarded as its one dimensional
signature, generated by the electromagnetic reflection of a
high-frequency broadband signal. It is obtained as the
distribution of the target reflectivity along the line of
sight.

The more information is available, the more effective is
the radar target recognition process. The ideal solution
would be the fusion of information coming from several
sensors. Nevertheless, this solution is not acceptable for
an autonomous system, of average complexity, as it is the
case for the most current radar systems. Another
possibility is to extract the information confined by the
dataset using different types of classifiers, which are
supposed to be partially complementary. The available
information being more complete, we can expect better
performances in classification by the fusion of the
decisions at the outputs of the classifiers.

Fusion makes the system not only more powerful but
also more robust because different classifiers have specific
discriminating capabilities and robustness with respect to
noise according to the angle of sight.

Several methods of fusion are presented in the
literature. Thus, [4] proposes an empirical fusion method
based on the majority vote rule and a distance criterion.
However, the problem is to know how to combine the
answers given by various classifiers in order to obtain the
best result. According to this idea, other approaches, much
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more systematic, are based on the Bayes method,
possibility theory, Dempster-Shafer theory, fuzzy logic or
fuzzy integral.

The paper is organized as follows. Section 2 describes
three classifiers which are aimed to produce the partial
decisions required by the fusion system. The basic
priciples of the fusion techniques considered in this paper
are given in Section 3, while Section 4 is dedicated to the
range profile database and to the simulation results issued
from the application of the fusion algorithms previously
presented. Finally, some conclusions are drawn together
with the future works we plan to do.

2 Classifiers

Three classifiers based on three different principles
have been used for classifying the radar target signatures.
They are briefly described in this section.

2.1

The multilayer perceptron (MLP) is a feedforward fully
connected neural network [5,6] having the structure
shown on Fig 1.
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Fig. 1 The multilayer perceptron structure

The data x is described by n coefficients (xy, ..., x,). Each
unit of the network is an artificial neuron (perceptron)
with the structure shown on Fig 2.

All the unit outputs of every layer are connected to all
the unit inputs of the next layer weighted by the values wy,
where / is the source unit and j is the target unit. These
weights are initialized with small random values and they
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Fig. 2. Artificial neuron structure.

The learning process consists in repeated presentations to
the network of the training vector and the corresponding
desired output vector. The objective of the learning
process is to minimize the quadratic error:

£=23 -0y 1)

where o; are the real outputs of the multilayer perceptron
units.

If the sigmoid function shown on figure 2 is used then
the following learning algorithm is obtained:

W, (¢ +1) = w, (1) 413, ()0, (1)
0, =co,[1-0,][d; —o,], for the output layer
0, =co,[1- oj]z O,w; , elsewhere
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The constant ¢ controls the slope of the sigmoid function
and n stands for the learning rate.

This rule is known as the back propagation algorithm or
the generalized delta rule. Its convergence can be
improved if a momentum term is added and the learning
rate is varied in an appropriate manner [6].

2.2 Fuzzy K Nearest Neighbor Classifier

The decision rule for the KNN (K Nearest Neighbor)
method [7] is very simple and can be easily generalized to
an arbitrary number of classes. Thus, if Vi(x) stands for
the K™ order neighborhood of the vector x and if:

K, (x)= card{xn (3)

x,0C, ,x, 0V, (x)}
then:

K, (x)= rg?l[l(j(x)] = x0C, (4)

The decision rule consists therefore in classifying the
unknown vector x in the same class as the most of its
neighbors belong to.

The integration of the fuzzy logic with the classical
KNN method principle results in powerful classifier,
which performs better in terms of recognition rate and is
more robust to outliers [8]. A central concept for the fuzzy

KNN method is the membership coefficient of a vector to
a class. Its value varies between 0 and 1 and can be seen a
measure of the vector capability to be more or less
representative for a class. The sum of the membership
coefficients of a vector to all the classes has to be equal to
1. Defining the membership in this way is less
constraining and better matches the physical reality,
because the transition from one pattern to another is very
often continuous.

The fuzzy KNN classifier needs a training or
fuzzyfication stage, when the membership coefficients to
each class are calculated for all the training vectors. The
following relationship has been used to calculate the
membership coefficient of the training vector x; to the
class C;:
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K defines the neighborhood value in the training stage,
while Kj.’) represent the number of the nearest neighbors

of the vector x, belonging to the class C;j. For a test vector
x its membership coefficients to all the classes are firstly
calculated using the following relationship:

0,0= 3 o, =[S (e 7) @

t=1

where K stands now for the neighborhood value in the test
phase.
Finally, a decision is made based on these coefficients:

0,(x)= max{oj(x)} =xU0C,

()

The membership coefficients for each test vector can be
seen as confidence measures for the classification results.
They are saved and then used just as the multilayer
perceptron outputs by the different fusion methods, which
are described in section 3.

2.3 SART classifier

The SART (Supervised ART) classifier [9] uses the
principle of prototype generation like the ART neural
network, but unlike this one, the prototypes are generated
in a supervised manner. It has the capability to learn fast
using local approximations of the class pdf and its
operation does not depend on any chosen parameter.

The basic idea is to create a new prototype for a class
whenever the actual set of prototypes is not capable
anymore to classify the training data set satisfactorily. The
prototypes are updated using the mean of the samples
which are correctly classified by each of them. The
updating process is repeated as long as there are
classification errors on the training samples and as long as
it dynamically changes the location of the prototypes.

Speaking in terms of probability distribution, the
prototypes become the centroids of the modes of the
multimodal class probability distribution.



The classifier structure is similar to that of an RBF or
LVQ neural network. The algorithm described above is
then used to train the hidden layer, while a MADALINE
network implements the output layer (Fig. 3).
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Fig. 3. SART classifier structure.

An important property of the algorithm is that it needs
no initial system parameter specifications and no
prespecified number of codebook vectors.

3 Fusion models

Three fusion models have been used for the information
fusion of the three previous radar target classifiers.

3.1 Sugeno’s fuzzy integral

Sugeno’s fuzzy integral is a non-linear functional, similar
to a Lebesgue's integral, defined with respect to a fuzzy
measure [10].

Let us consider a set Q and %:0 - [0, 1] a fuzzy
subset of this one. Then, the fuzzy integral of the function
h on Q, with respect to the fuzzy measure g, is

expressed by the relationship:
Fo 7(@)° g(1=max [mm [r;gp h(g). g(A)ﬂ

= max [min (a',g(ha))]

alo,1]

®)

where £, ={q | h(q) >a}.
h(g) quantifies the decision taken by the classifier ¢

concerning the membership of the unknown target to
some class. In other words, this value measures the degree
with which the concept /4 is satisfied by ¢ [11].

The term mDiilh(q) measures then the degree with
q

which the concept 4 is satisfied by all the elements of the
subset 4. g(A) represent the importance of the group of
classifiers constituting the set 4 for the final decision or,
in an equivalent way, the degree with which they satisfy
the concept g.

Consequently, the value obtained by the comparison of
the two quantities through the operator "min" will indicate
the degree with which the classifier set A4 satisfies the
two criteria. One can then conclude that the fuzzy integral
looks for the maximum degree of agreement between the
real possibilities and expectations, measured by the
functions /4 and g respectively [11].

In order to calculate the fuzzy integral, the values #(q;)
are  supposed sorted in  descending  order:
h(g,) =2 h(q,) = ---=h(q,); if they are not naturally, one
can always change the order of ¢, , so that this condition

is met. Hence, the fuzzy integral can be calculated with
the following equation:

x =Ty hg)e g(@=max[ min (h(q). g(4))]  (9)

q} -

g(4;) can be calculated in a recursive way using the

where: 4, I{q1 q,

following property of any fuzzy measure g,:

g(4)=g({a})=¢'
g(4)=g' +g(4.)+ AT B&(4.), i=2N

(10)

The data fusion of the N outputs of the N classifiers is
then carried out by the algorithm given below.

A. Training stage
1) Measure the performances of the classifiers and obtain
their fuzzy density function for each class.

g’/ =g ({ql}) is considered to be the recognition rate of
the classifier g, for the class C;.

2) Calculate, for each class C;j, the corresponding value A,
using the equation:

N
g(@)=1=A+1=[]1+Ag)) (11)
=1
B. Classification stage
1) Calculate the outputs o} =h,(q,), 7 oy of the N

classifiers corresponding to the m classes.
2) Calculate the fuzzy integral for each class with gi(4;)
determined with the equation (8):

X, = rilglg%([min(o}, gj(A,.)” (12)
3) Decide on the membership of the target according to
the rule:

a) if max )y, 2 ), and k :arg[mal)(j}z xUC,
Jj=lm °

Jj=lm

b) if max )y, <X, = x — unknown target

Jj=lm
where y, indicates a confidence threshold below which the
target is declared unknown. It can be considered as the
lowest value of the fuzzy integral y; obtained during the
training process. The block diagram describing the fusion
procedure is represented on figure 4.
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Fig. 4. Fuzzy integral based decision fusion

3.2 Possibility theory

The possibility theory has been initially developed by
L.A. Zadeh [12], D. Dubois and H. Prade [13]. It has the
capability to handle both the imprecision and the
uncertainty by means of a distribution of possibility and
two functions used for the event characterization: the
possibility and the necessity.

The central concept for the possibility theory is the
possibility distribution, which is defined over the
definition domain D={C,, ..., C,} of the given variable x
as:

m:D - [0,1], supm(x)=1

xO0D

(13)

It describes the degree of membership of each value of x
to the domain D, so that it is basically a fuzzy operator.
Nevertheless, it is considered here in a very specific
framework, namely to handle the imprecision associated
to the exact value of the data.

A possibility measure can be then obtained from the
distribution above with the following relationships:

0A402°, N(A) =sup rm(x)

x04

(14)

In order to be able to represent both the imprecision and
the uncertainty a necessity measure is also introduced. It is
related to the possibility measure by the equation bellow:

DADD, N(4)=1-n(4°) (15)
In the framework of the possibility theory the information
fusion is carried out using several combination operator
families: t-normes, t-conormes, averages, symmetric sums
etc. They use as inputs the values provided by the
possibility distribution which is supposed to be known in
this processing stage.

The choice of the combination operator is the central
problem for the possibility theory because it depends on
the considered application and the objectives to be
reached. The main criteria which can support the choice
procedure are the operator general behavior (conjunctive,
disjunctive or trade-off), desired properties, behavior in

conflicting situations, capability to discriminate different
cases etc. Several combination operator classes can be
used in different applications, e.g. max (t-norme operator),
min (t-conorme operator), mean and median (average
operators).

The final decision is made using the following rule:

x0C, if 44,(x)=max f1,(x) (16)
i=,N

where f/(x) is the membership coefficient of x to the

class C,.

3.3 Dempster-Shafer theory

As the possibility theory, the DS theory or evidence
theory allows for a representation of both imprecision and
uncertainty through two functions: plausibility and belief
[14, 15]. Both functions are derived from a mass function
defined on each subset of the space of discernment
D={C,, ..., C,} (i.e. 2°) onto [0,1], such that:

> m(4)=1

A0D

(17)

The first difficulty is the choice of a mass function. There
are two types of approaches: one based on distance
transformation [16] and another one based on a
probabilistic model [15]. Appriou [15] proposes two
equivalent models based on 3 axioms. The first one that
we will use in this article is given by:

mt({C}) ) =a,R p(q,/C)I1+R,p(q,/C))
m({c} ) =a, 1+ R pg,/C))
m (D)(x)=1-a,

(18)

where ¢; is the ™ classifier (supposed cognitively

independent), iZI,_N, a; are reliability coefficients on
each classifier i for each class j = I,_m (in our application

a;=1), and Rj:(n;}%x(p(qj/ci)))_l. Hence a mass

function is defined for each source and each class. The
second step of fusion: the combination is based on the
orthogonal Dempster-Shafer’s rule:

m()=0 ()

(19)

i=1,71(

Other conjunctive rules are proposed: the Dempster-
Shafer’s rule normalized by a conflict measure given by:

N

m(B)<1 (20)

k= ¥

BNB,N..NBy =0 i=

The Yager’s rule [17] redefines m(D) adding K. In this
article, we chose the Smets’s rule [18] that suppose an
“open world”, for each A4 of 2°:



m(4) = > m;(B)

B NB,N..NBy =4%0 i=

m(Q) =K

(2]

These rules give similar results on our data. The last
step of fusion is the decision. In the DS theory, we can use
the maximum of plausibility, maximum of belief or
maximum of pignistic probability [18]. We use the
maximum of plausibility in this article; the three previous
criteria give the same results on our data.

4 Database and simulation results

The fusion modelss previously described have been used
to classify 10 scale reduced (1:48) targets (Mirage, F14,
Rafale, Tornado, Harrier, Apache, DC3, F16, Jaguar and
F117). The real data were obtained in the anechoic
chamber of ENSIETA (Brest, France) using the
experimental setup shown on Fig 5.
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Fig. 5. Experimental setup

Each target is illuminated in the acquisition phase with
a frequency stepped signal. The data snapshot contains 32
frequency steps, uniformly distributed over the band
B=[11650,17850]MHz, which results in a frequency

increment of Af =200 MHz. Consequently, the slant
range resolution and ambiguity window are given by:

AR =c/(2B) 024m, W. =c/Q0f) =0.75m (22)

The complex signature obtained from a backscattered
snapshot is coherently integrated via FFT in order to
achieve the slant range profile corresponding to a given
aspect of a given target. For each of the 10 targets 150
range profiles are thus generated corresponding to 150
angular positions, from -5° to 69.5°, with an angular
increment of 0.5°.

The procedure of evaluation is based on a Knowledge
Discovery in Database (KDD) process (see Fig 6)
developed in [19].

The first step is the partition of the database in a
training set (for the three supervised classifiers) and test
set (for the evaluation). When all the range profiles are
available, the training set is formed by randomly selecting
2/3 of them, the others being considered as the test set.

The four combination operators of the possibility theory
presented in section 3 have been tested. We present only
the best operator on our data: the mean operator. Unless

the Sugeno’s integral and the possibility theory, the DS
theory is here applied on the decision of the classifiers and
not on the numeric output (o0,) of the classifiers.

The fusion of the three fusion models is based on the
Dempster-Shafer theory related to as FF.

Classification

Acquisition Data Preprocessing
selection MLP
KNNF
SART
I

Interpreteting: Fusion

Target Fusion Sugueno

identification Dempster-Shafer Possibility

Dempster-Shafer

Performing Data Mining

Fig. 6. KDD process for fusion of classifiers.

We repeat the training 15" times in order to achieve a
good estimator of the classification rate, and take the
mean of the classification rate (Table 1).

Table 1: Classification rate (%).

MLP KNNF SART Sug Pos DS FF

75.76 8732 88.45 89.48 90.55 93.76 94.12

Note that the three fusion models give better results in
mean than every individual classifier. The improvement of
the DS theory is statistically significant. The final fusion
achieves the best classification rate of 94.12%. The
improvement is not the same for all the 15™ tests, but for
each test the DS theory gives the best classification rate
compare to the two other fusion models (see Fig. 7).
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Fig. 7. Classification rate means calculated for each test.

The classification rate means are calculated for each
target. We can see that the FF does not give the best
classification rate for each test.

The problematic targets are not the same for each
classifier (see Fig 8: on this figure the classification rate
means are calculated on the 15™ tests). For example the
F14 is better recognized by the MLP classifier than the
KNNF classifier, and it is the contrary for the Rafale.
Hence the fusion of the models can exploit well the
differences to obtain better results.

We can also note that the problematic targets are not the
same for each fusion approach. Hence we can see that the
final fusion achieves the best results. However the



improvement is not significant compared to the DS model.
We have also tested the fusion of the six classifiers (MLP,
KNNF, SART, Sugueno classifier, possibility classifier,
and DS classifier). The results show a very small
improvement for a high computational cost.
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Fig. 8. Classification rate mean calculated for each target.

5 Conclusions and future works

We have used three classifiers based on three different
principles: a Multilayer perceptron, a fuzzy K Nearest
Neighbor, and a Supervised ART classifier. These three
classifiers allow good performances. However, the
performances are not similar according to the target. So,
we have used three fusion models: Sugeno’s integral,
possibility, and Dempster-Shafer theory to fusion the
outputs or decisions of the classifiers. These three
approaches outperform the results of the classifiers. The
Dempster-Shafer approach achieves the best classification
rate. The fusion of the three fusion models gives the best
classification rate. However the improvement is low for a
high computational cost.

As future work, we would like consider a fusion model
as an unique classifier. This means a very good radar data
modeling, especially the imperfections of the information.
The difficulty is this modeling, especially for the
uncertainty and imprecision numeric data and the
modeling of symbolic data.
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