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ABSTRACT

In noisy environments, a robust speech/non-speech de-
tection is necessary for speech recognition. This paper
presents a new method for speech/non-speech detection
using third-order moments. The analysis of the energy
third-order moment behaviour gives useful information
on energy distribution. The new algorithm is compared
to the one based on noise and speech statistics presented
in [5]. The results show that the new algorithm outper-
forms the one based on noise and speech statistics only,
especially in the case of noisy environments.

1 INTRODUCTION

The recognition performance decreases in very noisy en-
vironments, therefore the speech recognition system re-
quires efficient speech /non-speech detection. Indeed, in-
accurate speech /non-speech detection causes most of the
errors in automatic speech recognition.

Various studies tried to increase the speech/non-
speech detection performances. The principal signal-
measured parameter is the energy. Most of the time,
the energy is used with another parameter like the pitch
[2] or the zero-crossing rate [10]. A speech/non-speech
detection algorithm was developed using noise energy es-
timation. Then, [5] introduced another algorithm based
on noise and speech energy statistics.

It is well known that the speech signal distribution is
not a Gaussian distribution. So the two first order mo-
ment are not necessarily able to modelise properly the
speech signal. That is why, different studies considered
high order statistics are improving speech detection sys-
tem. [3] proposes the use of skewness and kurtosis utili-
sation (i.e. the third and fourth normalised cumulants).
[4] used a source separation technique in a voice activity
detection. This source separation is based on the fact
that the cross cumulant of two independent variables
is null. [9] used the fourth order cumulant of the LPC
residual in a voice activity detection system.

Since the speech energy distribution is not a Gaus-
sian distribution, the high order statistics give a better
distribution description. In this paper, we integrate a
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normalised third-order moment conditionally to the ini-
tial algorithm using noise and speech statistics.

This paper is organised as follows: First we will re-
call the previous algorithms based on noise and speech
statistics. Next we will present the third order moment,
and how we integrate it in the detection system. Finally
we will present the evaluation of this new criterion, and
the advantage of this approach.

2 PREVIOUS ALGORITHMS

The two previous speech/non-speech detection algo-
rithms are based on an adaptive five states automaton
[6]. The five states are: silence, speech presumption,
speech, plosive or silence and possible speech continua-
tion. The transition from one state to another is con-
trolled by a test on the signal features. These transitions
between states and some duration constraints determine
the endpoints segmentation.

We recall hereafter the two previous criteria based on
noise statistics and both noise and speech statistics.

2.1 Noise Statistical Criterion

The transitions between the states of the automaton are
based on noise statistics estimation. We assume that the
noise energy has a normal distribution. The noise energy
mean and standard deviation are estimated recursively
in the silence state of the automaton. Then we test
the hypothesis of silence (noise) state, for each observed
frame. The consideration of speech statistics improves
the decision, especially in noisy environments.

2.2 Noise And Speech Statistical Criterion

We consider here both noise and speech energy means
and standard deviations, to control the transitions be-
tween the states of the automaton. The noise statistics
are still estimated in silence state, whereas speech statis-
tics are estimated in speech state. This approach comes
from Bayes approach. We test the two hypotheses:

Hy: the observed frame is a noise frame (or non-
speech)

Hy: the observed frame is a speech frame.



We consider now two different normal distributions,
one for noise and one for speech. Hence, we compare the
two likelihood P(H;/z) for i = 0 or 1, where z is the
observed frame. Assuming the two hypotheses equally
distributed, and using Bayes formula, the problem is
reduced to a comparison to 1 of the likelihood ratio:

_ P(xz/Ho)
r(x) = m

3 THIRD-ORDER MOMENT CRITERION
3.1 High Order Statistics Estimation

The “classical” r**-order moment estimation of the en-
ergy is the arithmetic estimation:

1 n
/17“(77') = gzva
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where z; is the signal energy of the i'” frame, and n
is the number of frames. But this estimation does not
take into account the non-stationarity of signal. Hence,
we use the estimation on exponential windows. This
is equivalent to weighted frames with time decreasing
weights. Then, for an observed frame n, the r"-order
moment estimation is defined as:

fir(m) = ir(n = 1)+ (1= N)(a, = ir(n = 1)),

where A 1s the forgetting factor. The supposed level
of the signal stationarity determines the factor A, and
hence the number of considered frames used to calculate
the statistics. Contrary to the arithmetic estimator, this
estimator has bias, we have:

Eljir(m)] = (1= A" Hpp,

where p, is the theoretic r*"-order moment. We note
that this estimator is asymptotically without bias, when
A tends towards 1. The standard deviation formula for
this estimator 1s difficult to calculate in the general case.
A study of this estimator for high n values is available
in [7]. The author demonstrated that this estimator is
consistant, with a decreasing speed when the moment
order increases.

3.2 The Third-Order Moment

If we assume the quantity mean equals 0, the normalised
third-order moment is exactly the skewness. Some nu-
merical considerations show that third-order statistics
describe well the energy distribution, and that the es-
timator standard deviation is low enough. Hence, we
consider the normalised third-order moment, defined as:

i3(n)
a3(n)’

’ﬁlg(’ﬂ,) =

where fi3 and & are respectively, the energy third-order
moment and standard deviation estimation. They are
estimated like in the previous section with exponential
windows.
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Figure 1: Third-order moment representation

We plot on Figure 1, the energy, the third-order mo-
ment and the manual speech segmentation for a very
noisy signal. msg is calculated with a factor A = 0.9.
We can see that ms decreases considerably during the
speech periods.

3.3 Third-Order Moment Integration

We integrate now this parameter in the algorithm based
on noise and speech statistics. We calculate mg with
two different forgetting factors, one (A;; = 0.9) that
gives a short term estimation of the third-order moment,
another (A;; = 0.995) that gives a long term estimation.
The long term estimation 1s calculated recursively on the
stlence state of the automaton. We calculate the ratio
of mz obtained with Ay; = 0.9 and with Ay = 0.995.
Then for every state, when we are in the hypothesis
H, for the based algorithm noise and speech statistics,
we compare this ratio to a threshold. The threshold is
defined as follows:

T(n) = T(n—1)+ (1= Ap)(C.ratio(n — 1) = T(n — 1)),

where ratio(n) is the moment’s ratio estimation, in a
speech frame n, C' > 1, and Ap is a forgetting factor.
Hence, T(n) overestimates the moment’s ratio.

This approach assumes that both noise and speech
third-order moments are different, and that noise is
more stationary than speech. First test assumes that
noise and speech distribution are Gaussian, and so noise
and speech third-order moment are null. But this is an
approximation. We consider third-order moment to im-
prove the decision with the second test. Hence we de-
scribe the noise and speech periods better, and eliminate
the wrong noise detection.

4 Evaluation

We used two databases for the evaluations. One test
is performed to evaluate the segmentation obtained by
this algorithm, and another is conducted to evaluate the
resulting speech recognition performances. The speech
recognition system used is the CNET HMM-based sys-
tem [8]. We compare this algorithm with the initial



New-Initial | Omis. Inser. Reg. Frag.

vocabulary | 61-60 | 2578-2628 | 335-348 | 28-27

out-of-voca. | 57-42 158-156

Table 1: speech segmentation errors for threshold 1.7 -
PSN database

algorithm using noise and speech statistics. First we
describe the used databases, next we present the seg-
mentation test and the results. Finally we present the
recognition test and the obtained results with the new
algorithm. Manual segmentation gives 67% of vocabu-
lary words, 11% of out-of-vocabulary words and 22% of
noise.

4.1 Databases

A first database includes 1000 phone calls to an interac-
tive voice response service giving movie programs. It’s
recorded over PSN (Public Switched Network). The ob-
tained corpus contains 25 different words.

The second database is a laboratory GSM database
of 51 words. Several call environments are considered:
indoor, outdoor, stopped car and running car. Manual
segmentation gives 68% of vocabulary words, 4% of out-
of-vocabulary words and 28% of noise.

4.2 Segmentation Tests

The segmentation test is a comparison with a manual
segmentation of the speech and noise periods. Hence
we distinguish between the vocabulary words, out-of-
vocabulary words and several kinds of noise. We con-
sider different errors, the omissions (a vocabulary or out
of vocabulary word not detected), the insertions (de-
tected silence), the regrouping (several word detected as
one) and the fragmentation (one word detected as sev-
eral) [6]. With a view to the recognition, we class the
errors, the recoverable errors representing errors that
the recognition system can reject (insertion and noise
and out-of-vocabulary word detection), and the defini-
tive errors (omissions, regrouping and fragmentation).
We obtain the curves for different thresholds of the ini-
tial algorithm, and we plot definitive errors function of
recoverable errors.

Figure 2 presents the segmentation results on the PSN
database. We note that for a given threshold the new
algorithm gives more definitive errors, but less recov-
erable errors. For example for threshold 1.7, Table 1
shows that we have less insertion errors for the same
omission errors, and more regrouping errors for the out-
of-vocabulary words.

Figure 3 shows the test results on GSM database for
the four environments. We notice that the new algo-
rithm shows less recoverable and definitive errors that
the initial one. The difference for the definitive errors
comes from the regrouping errors. When we did the
tests on the different environments, we note that the
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Figure 2: Segmentation Tests - PSN base
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Figure 3: Segmentation Tests - GSM base

difference was more important for noisy environments
(outdoor, running car).

4.3 Recognition Tests

The recognition system used at CNET [8] is based on
HMM. We obtain the curves with different rejection
thresholds. We plot substitution and false acceptance
rates (respectively, vocabulary word recognised as an-
other vocabulary word, out-of-vocabulary word recog-
nised as vocabulary word) function of false rejection
rates (rejected vocabulary word).

The recognition test for the PSN database shows that
both algorithms are equivalent. The new algorithm
gives more definitive errors on this database, as we have
seen in the previous section, but the difference does not
change the recognition results.

On the GSM database, Figure 4 shows that the new
algorithm gives a small improvement for the two con-
sidered thresholds. The improvement is minimal. The
difference of errors comes from the regrouping errors,
that are not important on this database. Figure 5 shows
that improvement increases in noisy environments like
running car.

4.4 Discussion

The obtained results show that the new algorithm is
slightly more robust for noisy environments. This is
due to the errors insertion that are less important. The
third-order moment allows to reject more noise and
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Figure 4: Recognition Tests - GSM base
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Figure 5: Recognition Tests - GSM base running car

silence without increasing omission errors. However
the small improvement is not very significant on these
databases. We can explain this small improvement by
the fact that the initial algorithm describes correctly the
noise and speech energy distribution without the high
order moment. The difference between the third-order
moment in noise and speech periods permits to confirm
a speech period, but not to decrease omission or frag-
mentation errors (definitive errors). The cost of this
method 1s not important, and this approach is interest-
ing for very noisy environments.

5 Conclusion

We have integrated the energy third-order moment in
the speech detection algorithm based on noise and
speech statistics. The moment ratio allows to improve
the comparison between noise and speech energy distri-
butions. Segmentation and recognition test results show
a small improvement for the used recognition system es-
pecially in noisy environments. However, this improve-
ment is not significant. But this approach is interesting
in very noisy environments, and does not decrease the
performance for environment without background noise.

We integrate the energy third-order moment condi-
tionally to the initial algorithm decision. It is possible
to integrate this new criterion differently. For instance,
the new criterion can be seen as another decision to
decrease the omission and fragmentation errors. In a

further study, we will introduce this new decision using
some decision fusion method.
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