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Abstract. In the theory of belief functions, distances between basic be-
lief assignments are very important in many applications like clustering,
conflict measuring, reliability estimation. In the discrete domain, many
measures have been proposed, however, distance between continuous belief
functions have been marginalized due to the nature of these functions. In
this paper, we propose an adaptation inspired from the Jousselme’s dis-
tance for continuous belief functions.
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1 Introduction

The theory of belief function (also referred to as the mathematical theory of
evidence) is one of the most popular quantitative approach. It is known for its
ability to represent uncertain and imprecise information.

It is a strong formalism widely used in many research areas: medical, im-
age processing,... It has been used thanks to its ability to manage imperfect
information.

In the discrete case, information fusion, has known a large success, focusing
on the study of conflict between belief functions. Among these researches, it has
been considered that a distance between two bodies of evidence can be inter-
preted as a conflict measure used during combination as presented in [7]. Smets,
in [15], extended the theory of belief functions on real numbers thinking over
continuous belief functions by presenting a complete description.
In the discrete case, distances between probability distributions can be consid-
ered as a definition of dissimilarity in the theory of belief functions. Ristic and
Smets in [10], defined a distance based on Dempster’s conflict factor, others
proposed geometrical ones like Jousselme et al. in [5].



2 A distance between continuous belief functions

In this paper we are interested to adapt the notion of distance to the contin-
uous belief functions, and study the behavior according to two different types of
distributions.

This paper is organized as follow: in Section 2 we recall some basic concepts
of the theory of belief functions in the discrete case, and present the notion of
distance. Therefore, in Section 3, we introduce the continuous belief functions,
some of their properties and characterization. After this, we propose in Section
4 an adaptation of the Jousselem’s distance using Smet’s formalism. Finally, in
Section 5, the proposed distance is used to measure the distance to the continuous
belief functions where the probability density functions are following in the first
place all the normal then the exponential distribution, and the contribution of
using this distance instead of a classical scalar product.

2 Belief function theory background

This section recalls the necessary background notions related to the theory of be-
lief functions. It has been developed by Dempster in his work on upper and lower
probabilities [1]. Afterwards, it was formalized in a mathematical framework by
Shafer in [11]. This theory is able to deal and represent imperfect (uncertain,
imprecise and /or incomplete) information.

2.1 Discrete belief functions

Let us consider a variable x taking values in a finite set Ω = {ω1, · · · , ωn} called
the frame of discernment.
A basic belief assignment (bba) is defined on the set of all subsets of Ω, named
power set and noted 2Ω . It affects a real value from [0, 1] to every subset of 2Ω

reflecting sources amount of belief on this subset. A bba m verifies:

∑
X⊆Ω

m(X) = 1. (1)

Given a bba m we can associate some other functions defined as:

– Credibility: measures the strength of the evidence in favor of a set of propo-
sitions for all X ∈ 2Ω \ ∅:

bel(X) =
∑

Y⊆X,Y 6=∅

m(Y ). (2)

– Plausibility: quantifies the maximum amount of belief that could be given
to a X of the frame of discernment for all X ∈ 2Ω \ ∅:

pl(X) =
∑

Y ∈2Ω ,Y ∩X 6=∅

m(Y ). (3)
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– Commonality: measures the set of bbas affected to the focal elements included
in the studied set, for all X ∈ 2Ω :

q(X) =
∑
Y⊇X

m(Y ). (4)

– Pignistic probability transformation: proposed in[12], transforms a bba m
into a probability measure for all X ∈ 2Ω :

betP (X) =
∑
Y 6=∅

| X ∩ Y |
| Y |

m(Y )

1−m(∅)
. (5)

The bba (m) and the functions bel, pl are different expressions of the same
information.

2.2 Combination rules

In the belief function theory, Dempster in [1] proposed the first combination
rule. It is defined for two bbas m1,m2, ∀X ∈ 2Ω with X 6= ∅ by:

mDS(X) =
1

1− k
∑

A∩B=X

m1(A)m2(B), (6)

where k is generally called the global conflict of the combination or its incon-
sistency, defined by k =

∑
A∩B=∅m1(A)m2(B) and 1 − k is a normalization

constant.

The Dempster combination rule is not the only one used to combine, Dubois
and Prade proposed a disjunctive one. Smets [14] proposed to consider an open
world, therefore the conjunctive rule is a non-normalized one and for two basic
belief assignments m1,m2 for all X ∈ 2Ω by:

mconj(X) =
∑

A∩B=X

m1(A)m2(B) := (m1 ⊕m2)(X). (7)

and k = mconj(∅) is considered as a non expected solution.

This combination rule is very useful because, in one hand it decreases the
vagueness and, on the other hand, it increases the belief of the observed focal
elements.

3 A distance between two discrete belief functions

The aim of this paper is to define a distance between continuous belief functions,
let us begin by introducing some basic concepts relative to distances.
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3.1 Properties of the distance

The distance defined between two elements A and B in a set I satisfies the
following requirement:

– Nonnegativity: d(A,B) ≥ 0.
– Nondegeneracy: d(A,B) = 0⇔ A = B.
– Symmetry: d(A,B) = d(B,A).
– Triangle inequality: d(A,B) ≤ d(A,C) + d(C,B).

3.2 Scalar product

On a defined set, a distance can be measured with a scalar product between
two vectors f and g. A dot product has a symmetric and a bilinar form, and is
defined positive.

– 〈f, g〉 = 〈g, f〉
– 〈f, f〉 > 0
– 〈f, f〉 = 0⇒ f =

−→
0 : the zero vector.

We have 〈f, f〉 = ‖f‖2 which is the square norm of f .

To measure a distance using a scalar product, we use the following expression:

dSP (f, g) =

√
1

2
(‖f‖2 + ‖g‖2 − 2〈f, g〉)) (8)

In the next section, we will present a particular measure based on a scalar
product able to define a distance between two discrete belief functions in the
theory of belief functions.

3.3 A distance between two discrete belief functions

The distance introduced in [5] is the most appropriate distance to measure the
dissimilarity between two bbas m1,m2 according to [6] after making a comparison
of distances in belief functions theory. for two bbas: m1,m2 on 2Ω :

d(m1,m2) =

√
1

2
(‖m1‖2 + ‖m2‖2 − 2〈m1,m2〉)) (9)

and 〈m1,m2〉 is the scalar product defined by:

〈m1,m2〉 =

n∑
i=1

n∑
j=1

m1(Ai)m2(Aj)
|Ai ∩Aj |
|Ai ∪Aj|

(10)

where n = |2Ω |.
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Therefore, d(m1,m2) is considered as an illustration of the scalar product
where the factor 1

2 is needed to normalize d and guarantee that
0 ≤ d(m1,m2) ≤ 1.

According to [6], this metric distance respects all the properties expected by
a distance and it can be considered as an appropriate measure of the difference
or the lack of similarity between two bbas.
This distance is based on the dissimilarity of Jaccard defined as:

Jac(A,B) =
|A ∩B|
|A ∪B|

. (11)

Moreover, d(m1,m2) can be called a total conflict measure, which is an interest-
ing property to compute the total conflict based on a measurable distance like
presented in [7].

4 Continuous belief functions

Strat in [17], and Smets in [15] proposed a definition of continuous belief func-
tions. Strat, proposed to represent a mass function of a discretized variable in
a triangular matrix. This representation reduces the number of the propositions
and simplifies the computation of the intersections by focusing only on the con-
tiguous intervals.
Smets used the same representation and proposed the belief functions in the
extended set of reals noted R = R ∪ {−∞,+∞}.
However, using the belief function framework to model information in a contin-
uous frame is not an easy task due to the complex nature of the focal elements.
Comparing to the discrete domain, on real numbers, in [15] bba becomes basic
belief densities (bbd) defined on an interval [a, b] of R.

4.1 Belief functions on R

Smets generalized the classical bba into a basic belief density (bbd) noted mI on
the interval I. In the definition of the bbd, all focal elements are closed intervals
or ∅. Given a normalized bbd mI, he defined an other function f on R2, where
f(a, b) = mI([a, b)] for a ≤ b and f(a, b) = 0 whenever a > b.
f is called a probability density function (pdf) on R2.

– Credibility:

belR([a, b]) =

∫ x=b

x=a

∫ y=b

y=x

mR([x, y])dydx. (12)

– Plausibility:

plR([a, b]) =

∫ x=b

x=−∞

∫ y=+∞

y=max(a,x)

mR([x, y])dydx. (13)
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– Commonality:

qR([a, b]) =

∫ x=a

x=−∞

∫ y=+∞

y=b

mR([x, y])dydx. (14)

Smets’ approach is based on the description of focal elements from a contin-
uous function, where the frame of discernment is built having on connected sets
of R.

Nguyen introduced in [8] the notions of a source constituted by a probability
space and a multivalued mapping Γ able to define the lower probability. Ac-
cording to him, the probability distribution of a random set Γ is the basic belief
probability assignment. He shows the existence of a correspondence between be-
lief function in a source and the probability distribution of a random set. This
correspondence is established by constructing a probability distribution, which
its density is already defined.

Doré et al. in [2] proposed a similar approach founded on an index function
that can be assumed as Γ . This function can describe the set of focal elements
of a continuous belief function. In this case, every index has its own probability
measure where there is an allocated weight to a set of focal elements using a
credal measure.

4.2 Belief functions associated to a probability density

A probability density function is an expression of an expert’s belief. This prob-
ability can be expressed according to a basic belief density which is described
using a normal (Gaussian), exponential distribution.
In order to choose the most appropriate one among all the belief functions, we
apply the principle of least commitment for evidential reasoning proposed by
Dubois and Prade in [3], and Hsia in [4]

this principle can be considered as a natural approach for selecting the less
specific bba from a subset , It consists in selecting the least committed bba, and
supports the idea that one should never give more support than justified to any
subset of Ω.

Among all the belief functions, the consonant, where focal elements are nested
(there is a use of a relation of total ordering). The consonant are considered
as the most appropriate functions because they express the principle of least
commitment.
We are applying this principle to the consonant bbd in our illustration in section
6, to represent a normal distribution that is having a bell shape.

5 A distance between continuous belief functions

Traditional distances known for the discrete case are totally useless due to the
nature of the continuous belief functions like described in section4. First of all,
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we have shown in section 3.2, a scalar product is able to compute a distance
between two bbd. To handle the problem of the nature of these functions, a
scalar product is defined on R by:

〈f, g〉 =

∫ +∞

x=−∞

∫ +∞

y=−∞
f([x, y])g([x, y])dxdy (15)

In this section, we will introduce a new method to evaluate the similarity
based on Jousselme’s distance with Smets’ formalism on continuous belief func-
tions. A similarity /dissimilarity measure quantifies how much two distributions
are different. Using the properties of belief functions on real numbers, we are
now able to define a distance between two densities in a interval I.

〈f1, f2〉 = (16)∫ +∞

−∞

∫ +∞

yi=xi

∫ +∞

−∞

∫ yj=+∞

yj=xj

f1(xi, yi)f2(xj , yj)δ(xi, xj , yi, yj)dyjdxjdyidxi

The scalar product of the two continuous pdfs is noted: 〈f1, f2〉 satisfying all
proprieties stated in section 3.2, with a function δ defined as δ : R −→ [0, 1]

δ(xi, xj , yi, yj) =
λ(Jmax(xi, xj),min(yi, yj)K)
λ(Jmax(yi, yj),min(xi, xj)K)

(17)

where λ represents the Lebesgue measure used for the interval’s length,

δ(xi, xj , yi, yj) is an extension of the measure of Jaccard applied for the
intervals in the case of continuous belief functions where Ja, bK refers to (17).

Ja, bK =

{
∅, if a > b
[a,b], otherwise.

(18)

Therefore, the distance is defined by:

d(f1, f2) =

√
1

2
(‖f1‖2 + ‖f2‖2 − 2〈f1, f2〉) (19)

This distance can be used between two or more belief functions.
Let’s consider σf a set of bbds. We measure the distance between one bbd

and the n− 1 other one by:

d(fi, σf) =
1

n− 1

n∑
j=1,i6=j

d(fi, fj) (20)
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6 Illustrations

As mentioned in the previous section, the result of our work is a distance between
two or several bbds.

In this section we consider the cases of two different kinds of distributions:
the first one is a normal representation and the second is an exponential one.
We use these distributions to deduce the different bbds and then we are able to
measure the distance between two or several continuous belief functions.

The aim here is to have a probability distribution that includes uncertainty,
so we model it using the basic belief densities.

6.1 Basic belief densities induced by normal distributions

In this analysis we will focus on a normal probability density function, like
presented [9]. The focal sets of the belief functions are the intervals [µ−x, µ+x]
of R, with µ: the mean of the normal distribution and x ∈ R+ and σ: the
standard deviation. We consider a normal distribution N (x;µ;σ), with x ≥ µ:

ϕ(x) = 2(x− µ)2
1

σ
√

2π3
e

(x−µ)2
2σ , (21)

where ϕ(x) is the basic belief density associated to the Gaussian, when we apply
the principle of least commitment where x is the representation of the intervals
previously mentioned.

This function is null at x = µ, increases with x and reaches a maximum
of 4/(σe

√
2π) at x = µ +

√
2σ, then decreases to 0 at x goes to infinity like

presented by Smets in [15].

6.2 Analysis of a distance between belief densities induced by
normal distributions

In this part, we will make a comparison between two distances one is measured
using a classical scalar product and the other is our adaptation of Jousselme’s
distance for two and several continuous belief functions.

In Figure 1, we consider four pdfs having a normal distribution.

pdf 1 2 3 4

µ 0 0 4 4

σ 1 0.5 1 0.5

Table 1: Probability density distributions
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Fig. 1: Four pdfs following normal distribution.

First of all we measure the distance between f1 and the rest of the pdfs
using (19). After that measure the average of the distance between all the bbds
according to (20).

The average of the distances is d(f1, σf) = 0.634.
According to the Figure 1, the smaller is the distance, the more similar are the
distributions. The distance between f1 and f4 is the biggest one, this means that
those two distributions are the farest from each other comparing to the distance
between f1, f2, and f1, f3.
The distance between f1 and f2 is the smaller one, this can be explained in
Figure 1 by the fact that f1 is the nearest one tho f2.

distance value

d(f1, f2) 0.3873

d(f1, f3) 0.7897

d(f1, f4) 0.8247

Table 2: Distances measured.

In Figure 2, we fix µ1 = 0, σ1 = 0.5, and for the second pdf , 0 ≤ µ2 ≤ 10
with a step 0, 5 and 0.1 ≤ σ1 ≤ 3 with a step =0.1. For the normal distribution,
we only use focal elements where y = 2µ−x if µ1 6= µ2, then the distance based
on the classical scalar product is null. Else, y = 2µ = x, so the scalar product
presented in the continuous domain is:
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Fig. 2: Distance using a classical scalar prod-
uct.

Fig. 3: Distance using Jaccard based on
scalar product.

∫ +∞

y=µ

f(y)g(y)dxdy. (22)

After that, we consider the distance presented in (19) for continuous belief
functions.

Classical Scalar Product for belief densities induced by normal distri-
bution: In Figure 2, we notice that there is a remarkable drop in the value of
the distance followed by a discontinuity in the 3D representation. When µ1 = µ2,
the distance based on classical scalar product is not null, we can say that the
standard deviation has an impact on the distance. Moreover, when σ2 decreases,
in this case the distance based on the classical scalar product has a rising values.
However, reaching a certain point, especially when σ1 = σ2, we observe that the
distance is null, so here we are in presence of similar distributions.

Moreover, the distance based on classical scalar product does not have a
normalized value d > 1, 4. Unfortunately, the mean does not really have an out-
standing impact on the distance using the classical scalar product as a measure.
Based on that, the distance based on classical scalar product is almost useless in
this case, which can be considered as a bad representation of the distance. All
these elements created a trays’ phenomenon in the obtained Figure 2.

Continuous distance for belief densities induced by normal distribu-
tion: By varying the values of µ2 between [0, 10] with a step of 0.5 we obtain
Figure 3. When µ1 = µ2, and σ1 = σ2, we are dealing with similar distributions,
we obtain a null distance. Otherwise, wa also notice that when the difference
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between σ1 and σ2 increases, the distance rises. We have a similar behavior also
when the difference between the means µ1 and µ2, every time, the similarity
between the two distributions drops which is explained by a growth of the value
of the distance.
Comparing to the results obtained with the classical scalar product, we observe
that our distance takes in consideration the standard deviation, that does have
a real impact when computing this measure of similarity.

The difference between them, is the function δ presented in (17). δ, that
allows us to have a more specific distance between two belief functions and use
wisely the mean to have a better measure of the distance.

It is more useful, then and accurate to use our distance proposed in (19).

6.3 Basic belief densities induced by exponential distributions

In this section, we will suppose that the probability distribution is following an
exponential density. The specific expression is for the probability density.

f(y) =
y

θ2
e

−y
θ (23)

It is obtained when we use the Least Commitment Principle presented in
Section 4.2, on a set of basic belief densities associated to the exponential dis-
tribution, where θ is the mean and the focal elements are in the intervals [0, x].

6.4 Analysis of a distance between belief densities induced by
exponential distributions

We measure the distance between 2 exponential distributions according to a
classical scalar product definition, and our adaptation of Jousselme’s distance
for continuous belief functions.

Figures 4 and 5 show respectively the results obtained after computing the
two distances. We are dealing with two exponential distributions f1, f2, where
θ1 = 1 and θ2 ∈ [0.1, 10] with a discretization step = 0.1.

Classical Scalar Product for belief densities induced by exponential
distributions: At the begging of Figure 4, when θ1 = 1 and θ2 = 0.1, the
distance based on classical scalar product has the highest value. When the value
of θ2 increases, the distance between the distributions decreases continually until
it makes a discontinuity when θ1 = θ2 where it has a null value, this means that
f1 = f2.

After that, the value of θ2 gets far from θ1, the probability distribution f2
becomes different from f1 and that generates a non null distance that increases
suddenly just when θ2 gets bigger, then the distance based on classical scalar
product decreases and gets stable and reaches a value near to 0.4. Based on these
observations, the distance using the classical scalar product is not really adapted
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Fig. 4: Distance using a
classical scalar.

Fig. 5: Distance using Jaccard
based scalar product.

for continuous belief functions because it creates a discontinuity, and except the
point where θ1 = θ2, the variation of this distance does not reflect the difference
between θ1 and θ2.

Continuous distance for belief densities induced by exponential dis-
tributions: The behavior of the distance in Figure 5 is starting at the highest
value d(f1, f2) = 0.6 with the similar exponential distribution presented previ-
ously. When the value of θ2 gets closer to θ1, d(f1, f2) decreases and reaches a
null value where f1 = f2 (the distributions are similar to each other). Unlike the
the distance based on classical scalar product, the increase of d(f1, f2) is gradual
as θ2 gets bigger values, the distance grows continually.

7 Conclusion

In this paper we have introduced an adaptation of the Jousselme’s distance for
the continuous belief functions according to Smets’ formalism. This measure is
able to define a distance between two or several basic belief density functions.

This distance is based on the function δ, which take into account the impre-
cision of the focal elements, whereas the classical scalar product. This distance
has all the properties of a classical distance.

To illustrate the behavior of the proposed distance in different situations, we
used different probability distributions: a normal and an exponential one, from
which we deduced basic belief densities. Afterwards, we compared our distance
to the results obtained when using a distance based on a classical scalar product.

In future work, we will use the proposed distance in order to define a conflict
measure for continuous belief functions.
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