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SHORT ABSTRACT: Ship wakes are often used as the primary means to detect ships in SAR im-
ages since they can extend for kilometers. On radar images, they often take the appearance of bright
and/or dark lines hidden in the sea clutter. For this reason, robust and efficient line detection al-
gorithms are needed. Our first results tend to support the classical method relying on the Radon
Transform and confirm the improvements brought the recently proposed stochastic matched filtering
(proposed in 2005), but are somewhat mitigated about the wavelet correlator (proposed in 2003),
the Hough Transform or the use of Wiener filtering to improve the Radon Transform thresholding.
Keywords: ship wakes, radar, SAR, line detection.

RÉSUMÉ COURT: Le sillage est considéré comme l’une des signatures les plus significatives d’un
navire dans une image radar, car il peut s’étendre sur plusieurs kilomètres. Il prend la forme de
lignes sombres et/ou claires qui sont noyées dans le fouillis de mer. Pour cette raison, des algo-
rithmes de détection de ligne robustes sont nécessaires. Nos premiers résultats tendent à soutenir
la méthode classique fondée sur la transformée de Radon et confirment l’efficacité du filtrage sto-
chastique adapté (proposé en 2005), mais sont mitigés au sujet de la corrélation intra-échelle de
la transformée en ondelette (proposée en 2003), de la transformée de Hough, ou de l’utilisation du
filtrage de Wiener pour améliorer le seuillage de la transformée de Radon.
Mots-clés: sillages, radar, ROS, détection de droites.

1 INTRODUCTION
Ship wakes are often used as a primary means of detecting a ship in synthetic aperture radar (SAR)
images since they last for often many hours, thus leaving a trail that can extend for kilometers. The
image of the wake is larger than the echo of the ship itself and is generally visible from space. The
wake has the added advantage of providing information on the heading of the ship. Furthermore, if
the image resolution is good enough, additional parameters can be extracted from the wake, such as
the beam of the ship and its speed [1]. That information can be fed as an input to ship tracking or
ship identification algorithms.
The appearance of wakes in radar images depends on various parameters [2]: the shape of the hull
– as mentioned above – but also on the sea state, the observation geometry and the characteristics of
the radar, like the carrier frequency, the polarization, or the observation configuration (monostatic or
bistatic). Depending on the configuration, one or several of the following features are visible. First,
the wake is nearly always characterized by a dark streak behind ships. This dark trail originates
from the turbulent vortex created by the ship, which reduces the roughness of the sea. The dark
wake may be delimited by one or two bright lines, especially in L-band radar. Sometimes also, often
in X-band radar, another set of bright arms can be visible: they are located at the border of the Kelvin
wavesystem and form a characteristic angle of about 39o. Fig. 3.a presents a ERS-1 C-band image
of a ship where the dark turbulent wake and a bright Kelvin arm are clearly visible.
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These two sets of features (dark lines, bright lines) are of primary importance when wake detection
is considered, because they allow for the use of line detection algorithms. However, the detection
task is complicated by the presence of multiplicative noise (speckle), which is prominent when the
sea state is high, since it hides the wake. This paper analyzes and compares existing methodologies
to deal with automatic ship wake detection in SAR images.
In section 2, we carry out a review of existing methodologies. We focus our analysis on four ap-
proaches in particular, which we feel are representative of the spectrum of methods available today.
Most of the algorithms reviewed here begin with the Radon transform, since its properties make it
particularly suitable to line detection in speckle noise. The Radon transform is applied to the raw,
noisy image, and the features visibility is then optimized by using subsequent processing stages such
as i) Wiener filtering [3] or ii) the stochastic matched filtering method, which has been proposed re-
cently [4]. Other approaches relie on multiscale analysis, such as iii) wavelet transforms [5]. Those
extract features by assuming that objects such as wakes display a certain correlation between ad-
jacent scales, unlike noise. Finally, another approach may be to use iv) the Hough transform [6],
which is related to the Radon transform in its principle and can be faster to compute, but which is
not as robust to noise; that third approach requires to despeckle the image beforehand.
Section 3 presents a comparison of these methods, both on actual data, and on simulated images.
The criteria we used are the computation complexity, the computation time, and a first evaluation of
the robustness to noise.

2 DESCRIPTION OF THE ALGORITHMS
Wake detection generally follows the process outlined in Fig. 1. First, it can begin by an optional
pre-processing step. This stage aims at reducing the amount of speckle while preserving, or even
enhancing, the visibility of the wake features. Then, a transform is performed, so as to reduce the
dimension of the problem. Another parametrization is used to represent a line: instead of represent-
ing it by the collection of pixels which form its image, an analytic representation is preferred. Lines
are represented by the reduced equation ρ = x. cos θ + y. sin θ where ρ ∈ R is the distance of the
line to the origin of the image, and θ ∈ [0;π[ the angle between the normal to the line, and the x
axis. The line can thus be represented by the couple (ρ, θ), that is, a single point in a radius-angle
plane. The problem is then to transform the image from the (x, y) plane into a representation in the
radius-angle plane. A computer representation of the radius-angle plane requires however that plane
to be quantized in bins of size ∆θ ×∆ρ. Two methods are commonly used: the Radon Transform
(RT) and the Hough Transform (HT). The RT or HT must then be adequately thresholded to isolate
those points (ρ, θ) that correspond to a line in the image. So as to increase the signal-to-noise ratio
in the radius-angle space, the thresholding is often preceded by another cleaning step.

Edge detection:
* Wavelet Correlator
* Phase Symmetry

Radon Transform

Gaussian blur

WienerHough Transform

Threshold > μ+k.σ 

 Image

Wake

Clipping / Normalization

Threshold > μ+k.σ Threshold > μ+k.σ SMF

1 2 3 4

- +

- +

Mean 3 x 3

Pre-processing

Transform

Detection

Fig. 1: Flowchart of the four algorithms {1, 2, 3, 4} presented in this paper
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2.1 The Radon Transform and the Hough Transform
The Radon Transform of image I is defined in such a way that the value of the transform at (ρ0, θ0), is
equal to the integral of the image over the line of equation ρ0 = x. cos θ0+y. sin θ0. Mathematically,
this representation can be written:

RI(ρ0, θ0) =
∫∫

x,y

I(x, y)δ0(x. cos θ0 + y. sin θ0 − ρ0) (1)

This transformation is invertible. If x0 and y0 are fixed, then the sum over the sinusoid of equation
ρ = x0. cos θ + y0. sin θ in the Radon plane will yield the intensity of the pixel at coordinates
(x0, y0) in the image plane. The Radon Transform is generally not used for line detection but it is
well-adapted to that task for images of the sea. Ship wakes are either very bright or very dark, while
the sea returns are average. Intuitively, if all the pixels of a given line are bright, and the others
are only average, the Radon Transform of the image will bring a large sum at the particular (ρ, θ)
point corresponding to the line, and moderate values elsewhere. Said otherwise, a spike appears at
point (ρ, θ). A simple thresholding of the Radon Transform will then allow the user to detect that
particular point and provide the analytical representation of the line. A dark line will similarly yield
a strong negative spike. On the other hand, through summing, speckle is somewhat canceled.
The Hough Transform was introduced in a patent by Paul Hough in 1966 and also uses a parametric
representation of a line. Initially, the y = a.x + b parametrization was used, with is problematic for
vertical lines since a becomes infinite. Duda & Hart [7] suggested using the same parametrization
as the Radon Transform, which is how the Hough Transform for lines is mainly known as today.
Before computing a Hough Transform, an edge detector is applied to the image; this can be seen as
a particular cleaning step as exposed above, since highlighting edges already requires to cast out the
noise. A binary edge map is obtained: a particular pixel at (x0, y0) has a value of 0 if the pixel is
not located on an edge, 1 otherwise. Since pixel (x0, y0) can belong to an infinity of lines having an
equation of the form: ρ = x0. cos θ + y0. sin θ, which is a sinusoid in the ρ − θ space, all bins of
the radius-angle plane that intersect it are incremented by one in a process known as “voting”. All
in all, if many pixels are located in the image space on a line of equation ρ0 = x. cos θ0 + y. sin θ0,
the corresponding (ρ0, θ0) bin will have a large number of votes. Again, thresholding the Hough
transform yields the parametric representation of the lines in the image. Contrarily to the Radon
Transform, the Hough Transform is not strictly invertible.

2.2 Image enhancement prior to transforming
Denoising & improved edge detection Radar images are corrupted by speckle. This is a cause
for concern when detecting the wake features, since speckle makes them less visible and harder to
detect. This is especially true when the Hough Transform is to be used, since the edges must be
perfectly detectable and noise must not be considered as an edge. Classical edge detectors such as
the Canny-Deriche filter [8] behave poorly in heavily speckled images: the Canny detector, which is
linear, smooths the image at the same time it performs detection but in an indiscriminate way, thus
dampening the image gradient near edges when too much smoothing is needed. Adaptive filters,
often based on wavelets, have been shown to be more suited to perform denoising; a good example
might be the Enriched Diversity Digital Wavelet Transform [9]. Instead of using the image gradient
to detect edges, other criteria that are more robust to noise can be used. In our case, we used the
phase symmetry from Kovesi [10]. When the image is moderately unspeckled, or after applying
a median filter, phase symmetry allows for detecting the line sufficiently well enough so that the
Hough transform may be applied.

The Wavelet Correlator The use of an intra-scale correlation on the wavelet decomposition of
the image has been proposed by Kuo and Chen [5] with the intent of enhancing the visibility of the
edge-like features of wakes prior to computing the Radon Transform or the Hough Transform. The
idea is to compute a Discrete Wavelet Transform (DWT) of the image on n scales, which yields
for each scale four sub-images: the approximation Aj , and three detail images Dh

j , Dv
j and Dd

j

(horizontal, vertical and diagonal details). As a side-effect, the dimensions of the sub-images at
scale j are reduced by a factor 2−j compared to the original size. Then, the modulus of the detail
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image is computed at each scale j:

Mj =
√
|Dh

j |2 + |Dv
j |2 + |Dd

j |2 (2)

A wavelets correlation for the image at position (x, y) is computed by multiplying the moduli Mj

for which the point at (x, y) has contributed, over all scales (this requires to re-sample the Mj , j > 1
images to the same size as M1, which we symbolize by the [↑ 2x] operator):

R =
n∏

j=1

[↑ 2j−1]Mj (3)

2.3 Thresholding in the ρ− θ space
Direct thresholding Once the Radon or the Hough Transform are computed, the spikes corre-
sponding to the lines must be detected. In the approach proposed by Rey et al. [3], the running
mean (computed on a 3 × 3 window) of the Radon transform, is subtracted to it, so as to enhance
the visibility of the spikes corresponding to the lines. Fig. 2 shows the result of that operation on a
sample image. Then, the standard deviation of the Radon Transform σ is computed, and each bin
that has a modulus greater than k × σ (k ≈ 3− 4) is considered as a spike.

Thresholding after Wiener filtering Since the digital Radon Transform is computed on bins, of
width ∆ρ × ∆θ, and since the lines have a given width which is not necessarily zero, it so occurs
that the spike corresponding to a line in the Radon Transform is not a Dirac and spills over on
adjacent bins. Rey et al. [3] proposed to model the spike as a Gaussian, and advocated the use of
Wiener filtering to increase the sharpness of the spike. Basically, everything happens as if the Radon
Transform (which admits R as a Fourier Transform) were the blurred version of some ideal image
(which has R’ as its Fourier Transform) where the spikes are pure Diracs. The transfer function
is a Gaussian kernel H , and the background signal (Fourier Transform: N ) is considered as noise:
R = H.R′ + N . Using Wiener filtering aims at estimating R′ by inverting the blurring process to
retrieve the Dirac without the noise level being increased too much during the inversion process. If
R̄ is the Fourier Transform of the estimate:

R̄ =
H?

|H|2 + λ
R (4)

with λ chosen as the noise-to-signal ratio.

The Stochastic Matched Filter The Stochastic Matched Filter (SMF) can be seen as an extension
of the traditional matched filter. The matched filter is the optimal linear optimal filter under the
following hypotheses: i) the useful signal to detect is perfectly known and ii) the noise is additive.
The use of SMF for wake detection has been proposed by Courmontagne in [4].
Let Z be the observed signal: Z = S + N , where S is the useful signal and N the noise. Z is
sampled on n values Z(1) to Z(n). We call W (s) a window of width L = 2l + 1 centered around
sample s: W (s) = [Z(s − 2l), ..., Z(s), ..., Z(s + 2l)]t. W (s) is the sum of two random vectors
WS(s) and WN (s) representing respectively the windowed sequence of useful signal samples and
the windowed sequence of noise samples. W (s), WS(s) and WN (s) can be modeled as random
vectors taking values in the gray levels space; let G be the number of possible gray values. There
are GL different manners to construct a realization of a window W (s). We note pi the probability
of observing configuration W i

S of WS(s) and qj the probability of observing configuration W j
N of

the noise. Thus, the average signal to noise ratio on window W (s) before filtering is:

SNR(s) =
∑GL

i=1 pi.W
i
S

t
.W i

S∑GL

j=1 qj .W
j
N

t
.W j

N

(5)

The stochastic matched filter is a FIR filter H of length L which is intended to maximize the signal-
to-noise ratio after filtering, which we note SNR′:

SNR′(s) =
∑GL

i=1 pi.(Ht.W i
S)t.(Ht.W i

S)∑GL

j=1 qj .(Ht.W j
N )t.(Ht.W j

N )
=

Ht.
(∑GL

i=1 pi.W
i
S .W i

S
t
)

.H

Ht.
(∑GL

j=1 qj .W
j
N .W j

N

t
)

.H
=

Ht.ΓS .H

Ht.ΓN .H
(6)
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ΓS and ΓN are the covariance matrices of WS(s) and WN (s), respectively. We can write A =
ΓS/trace(ΓS) and B = ΓN/trace(ΓN ), thus we get:

SNR′(s) =
trace(ΓS)
trace(ΓN )

.
Ht.A.H

Ht.B.H
(7)

The theory shows that the SNR is improved when H is an eigenvector Xi of C = B−1.A associated
to an eigenvalue λi > 1, and the improvement ratio is λi, if the eigenvector is normalized such that
Xt

i .B.Xi = 1. There are Q ≤ L eigenvectors associated to eigenvalues greater than one. This result
can be used in two ways:

1. To enhance the observed signal: an enhanced version of W (s) would be:

W ′(s) =
i≤Q∑
i=1

Ht
i .W (s)

2. To detect whether the signal is present or absent, by computing a threshold with which the
wake signature can be detected using a maximum likelihood scheme [4].

Using the stochastic matched filter requires to decompose C into eigenvectors, and thus to know ΓS

and ΓN . ΓS is modeled a priori on a large number of simulations of the useful signal in a noise-free
environment. This matrix will have a size L× L. The number of simulations must be larger than L
to prevent the covariance matrix from being nearly singular. Similarly, the covariance matrix of WN

is obtained on more than L simulations or examples of WN (taken from the observation when the
absence of useful signal is guaranteed). This can be partly done off-line. When the signal to detect is
perfectly known, C has only one eigenvector which is the mirrored, conjugate version of that signal,
and we fall back to the traditional matched filter theory.
In the case of a 2-D signal, W (s) can be constructed by taking a 2-D window, then concatenating
all the lines of the window to form a 1-D vector. The 1-D theory is used, then the 2-D filters are
retrieved by folding back the Xi’s into 2-D masks. Two-dimensional correlations can also be used
[11].

3 COMPARISON OF THE METHODS
We implemented four algorithms, as indicated in Fig. 1, which make use of the aforementioned
methods in a coherent way, while bearing in mind that in some cases, some stages could be swapped
between some algorithms. In algorithm 1, the first stage consists in subtracting the local average of
the image to make it more robust to local variations of intensity of the image. Either the Wavelet
Correlator, or the Phase Symmetry algorithm is used in the pre-processing. The second and third
algorithm are our own direct implementation of the algorithms proposed by Rey et al. The fourth
one is our own interpretation of the stochastic adapted filter.

3.1 Computation complexity
All the linear filtering operations except the DWT are computed using a FFT. For an image of size
N×N , this yields aO(N log N) complexity. The complexity of the DWT, when Mallat’s algorithm
is used, is in O(N2). The computation of the Radon Transform for an N ×N image over M angles
(where M has the same order as N ) has a O(N2.M) ≈ O(N3) complexity in its simplest form
though a parallel algorithm exists that brings the complexity down toO(N2. log N) [12]. The Hough
Transform has a O(N2.M) complexity too, but since it works on binarized images where not all the
points contribute, its computation time is marginally lower than the Radon Transform. However, the
intensive preprocessing required by the Hough Transform can add a tremendous computation cost. A
special note must be given about the Stochastic Matched Filtering: while the Matched Filtering phase
itself can be computed using a series of FFT (one per Hi), the preparation phase takes more time. As
we implemented it, the filter is applied on a 17× 17 window, which requires the computation of two
289× 289 covariance matrices. In particular, computing the covariance matrix of the signal requires
to simulate the appearance of several line signatures in the Radon plane, which means performing
as many Radon Transforms (in our case, more than 289; otherwise, the covariance matrix would be
nearly singular and some eigenvalues infinite).
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3.2 Computation time
The key computation times are the following: while Algorithm 2 and 3 are nearly instantaneous,
since the only long stage is the Radon transform (1 second, typically, with the optimized Matlab
routine on a Pentium IV), computing ΓS takes about 1500 s for 512 trials (and as many Radon
transforms); this can however be done off line. Computing ΓN takes only 89 s since only one Radon
Transform needs to be computed: that of the image to filter, from which the noise information is
extracted. The phase symmetry algorithm takes about four seconds to compute under Matlab, and
the Wavelet Correlator about two.

Fig. 2: “Simple Line Image 2” (SNR 2 dB), and its Radon Transform without the local mean

3.3 Comparison on images
We first compared the algorithms on a real image (fig. 3.a). Since all algorithms detected the wake
satisfactorily with a good margin, we decided to test how the images behaved in a simple case with
noise increasing. We generated four synthetic images (size 256 × 256) which were corrupted by
Rayleigh noise (the image is not clipped at 255). The “simple line images” consist in two linear
trails, one dark, and one bright, which is typical of the turbulent wake; each trail is one pixel large.
The average sea return is set to gray level 128; the gray level of the wake varies in each image
according to the following table (the values in dB are the relative differences with the mean sea
return, which we call somewhat abusively the “image SNR”). When detecting, the thresholding
parameters are set to wake detection limit..

Image Dark arm Bright arm Difference (dB)
1 64 255 ±3
2 81 203 ±2
3 101 161 ±1
4 114 144 ±0.5

Algorithm 1 performs moderately well on low SNR. The Wavelets Correlator does not lock on linear
features as well as expected, even if it highlights the ship in the real image really well (fig. 3.b). We
explain this behavior by the following: wavelets are adapted to detect punctual singularities but not
higher order ones, such as lines. The wavelets correlator performs better on higher resolution wakes,
such as the SAR image obtained with the ENSIETA simulator [13] where the Kelvin wake system
is clearly visible (fig. 4); this was also the configuration shown in the original paper by Kuo and
Chen [5]. On the other hand, the phase symmetry detector provides sufficiently points for the Hough
Transform to lock well. The downside is that this is rather (about 6 FFTs), which nullifies the gain in
speed obtained with the Hough Transform. Nothing is detected below a 2 dB image SNR, because
the edge detector fails to extract the wake.
Algorithm 2 and 3 behave well on all images when the SNR is reasonably high, but tend to raise
false alarms when the signal-to-noise ratio decreases, or to falsely claim that no wake is present when
there is one. Adding the Wiener filter is sometimes efficient, but requires a delicate tuning of the
Gaussian used for deconvolution. Our experience is that detection is generally less robust with the
Wiener filter than without (all other things remaining the same). This could be explained by the fact
that deconvolution is not intended to augment the signal to noise ratio, but only to reduce the spike
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a) b)

Fig. 3: a) ERS-1 image ( c© ESA), b) wavelet correlation on 4 scales. Notice how only the ship is
detected by the wavelet correlation.

a) b)

Fig. 4: a) simulated SAR image [13], ≈ 2 × 2 m resolution, sea state 2. b) result of the wavelet
correlator on 5 scales.

width; besides, the Gaussian is only a crude approximation of the appearance of the wake spike in
the Radon plane. Without the Wiener filter, algorithm 2 detects the wake without any false alarm for
an image SNR equal to 1 (threshold set to m + 9σ); when the SNR drops to 0.5, the threshold fails
to m + 4.5σ; the wake is detected but typically many false lines are detected, too (fig. 5.a).
Algorithm 4 (the stochastic matched filter) has the best results. The threshold remains relatively
stable (about 0.7 times the maximum) as the SNR augments and at SNR = 0.5 dB, the number of
falsely detected lines, at the detection limit of the real wake, is typically half the number of falsely
detected lines obtained with algorithm 2 (fig. 5.b).

4 DISCUSSION & CONCLUSION
It appears that the Stochastic Adapted Filtering seems promising, and brings a little improvement
in detection that comes at a cost: the signal must be modeled a priori through simulation. This
can be done off- line, however. The classical algorithm comes second in our evaluation and has
the merit of being simple and fast. The Hough Transform is too much unsuited for wake detection,
since it requires a too intensive preprocessing step to be really interesting. Finally, our position on
the the wavelet correlator is ambivalent: it does indeed highlight interesting features such as ships
and removes the background noise (sea waves), but sometimes fails to capture linear features as
desired; its use must probably be studied more. This paper is only but a first approach for a com-
parison of common wake detection algorithms. For a more thorough comparison of the algorithms,
statistical measures must be performed. These would require typically a thousand realizations per
given configuration (noise level, wake position & direction, presence or absence of wake), which
understandably requires time, but this study is envisaged at the ENSIETA. The final step would be
a benchmark on a bank of real images, where the algorithms outputs would be compared to several
manual segmentations provided by human experts, for instance by resusing the metric introduced
recently by two of us [14].
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