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Abstract—The K elvin wak e of a ship is directly link ed to the
ship’s speed, heading and hull shape. This wak e can be visible
in high resolution synthetic aperture radar images or optical
images. Whenever it is possible, analyzing it can provide elements
to identify the ship and track its course. We propose a strategy
based on the generalized Radon Transform and the Stochastic
Matched Filtering where the locus of the wak e signature in the
2D spectrum of the image is to be detected.

Index T erms—Marine surveillance, ship wak es detection, gen-
eralized Radon transform, stochastic matched filtering

I. INTRODU CTION

Ship wakes are a very visible feature on Synthetic Aperture

Radar (SAR) images or high resolution optical images, since

they stretch over kilometers. As such, they are a tell-tale

signature of a ship. The wake is generally categorized into

two phenomena. First, there is the turbulent ship wake, which

appears as a long, dark streak behind the ship. The second

phenomenon is the Kelvin wake, consisting in a system of

waves living in a 39◦ cone (if the sea is of “nearly infinite”

depth).

There is a large body of work dedicated to the detection of

the turbulent wake. Generally, this boils down to performing

line detection. The Radon and the Hough transform have

been shown to be very suitable for this task. V arious pre-

processing and post-processing algorithms have been proposed

to, respectively, enhance the visibility of the wake before the

transformation, and to improve the thresholding of the wake

signature in the transform (see [1] for a benchmark). It is also

common to distinguish the wave pattern of the Kelvin wake

with either airborne SAR images or high resolution optical

images. Analyzing the Kelvin wake can yield an estimation of

the ship’s speed and heading, which can be merged later with

other observations (coming, from instance, from the Doppler

effect) in a fusion scheme so as to increase the robustness of

the overall estimation of these parameters.

Here, we introduce a method to reliably detect the Kelvin

wake based on the analysis of its 2D spectral signature. The

method uses a pre-processing step based on a generalized

Radon transform (GRT) of the 2-D Fourier transform of the

image. The result of the transform is then thresholded using

stochastic matched filtering.

II. PROBLEM STATEMENT

Theory shows that the analytic elevation ζ of the sea

surface at point (x,y) can be described by a superposition of

sinusoidal waves, each having a certain direction θ, amplitude,

and phase φ(θ):
{

ζ(x,y) =
∫ π/2

−π/2
AU (θ) e x p φ(θ)d θ

φ(θ) = −ikU,θ0(θ)[x cos(θ − θ0) + y sin (θ − θ0)]
(1)

Here, θ0 is the ship’s heading, AU is a (complex) amplitude

sometimes called the Kochin function, which depends on the

wave’s direction, the hull geometry and the ship’s speed U .

Finally, kU,θ0
(θ) is the wavenumber of the wave travelling in

direction θ in a local frame such that the x axis is aligned

with the wake’s axis of symmetry:

kU,θ0
(θ) =

k0
U

cos(θ − θ0)2
(2)

with k0
U = g/U2 and g denoting the acceleration of gravity.

This expression stems from the fact that the Kelvin wake

system travels at the same speed than the ship. The 2-D Fourier

Transform Z of ζ, using coordinates (κx,κy) in the Fourier

plane, is:

Z(κx,κy) =

∫ +π/2

−π/2

A?
U (θ)δ(gU,θ0

(κx,κy))d θ (3)

with function gU,θ0
defining the locus (k,θ) of the wake; this

function must agree with equation (2), so:

gU,θ0
(κx,κy) = 0

4
⇔

{

θ = arctan (κy/κx) + θ0

k(θ) =
k0

U

co s2 θ

(4)

Figure 1b illustrates this result by showing the Fourier Trans-

form of figure 1a, along with the locus of the wake spectrum,

which follows equation (4).

In remote sensing, only the image I(x,y) of the surface as

acquired by a camera or a radar is known; ζ(x,y) is not. W ith

SAR, the spectrum of I can be linked to the spectrum of ζ by

a transfer function H [2]; the same is valid for optical pictures

(provided that there are no perspective distortion). Function H
accounts, for instance, for the position of the light or the radar

in the scene, and links the angles of incidence of light, to the



x [m]

y 
[m

]

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

(a) Original picture

κ
x
/(2π) [m−1]

κ y/(2
π)

 [m
−1

]

−400 −200 0 200 400

−400

−300

−200

−100

0

100

200

300

400

(b) 2D Fourier Transform

2πκ
x
 [m−1]

2π
κ y [m

−1
]

−400 −200 0 200 400

−400

−300

−200

−100

0

100

200

300

400

(c) Locus of wake spectrum

Fig. 1: An optical picture of a wake (source: USGS) and its locus in the Fourier plane.

local reflectivity. If H is assumed to be nearly linear, then the

locus of the wake in the spectrum of I will be essentially the

same than in Z.

The problem is then to detect this locus reliably, since the

wake signal will be lost in the spectral components coming

from other waves. The only approach that we are aware of,

consists in detecting couples of points (P1i, P2i) on the locus

(by thresholding the Fourier transform) and then using them to

determine an estimation (Ui, θ
i
0), the final estimation of U and

θ0 being obtained by averaging the Ui’s and the θi
0’s [3]. We

believe this method to be unreliable since only a few falsely

detected couples of points can corrupt the average. Even if a

RANSAC scheme [4] could be used to reject the outliers, it

is much better to improve the detection in the first place.

III. PRESENTATION OF THE ALGORITHM

In this section, we detail the steps used in our algorithm to

detect the locus of wake spectrum. The algorithm is divided

into three steps: first, a preprocessing on the Fourier transform

of the image, then a Generalized Radon Transform is used, and

finally, the transform is enhanced using Stochastic Matched

Filtering prior to a thresholding.

A. Pre-processing

First, the local average of image I is subtracted; we worked

with a window being ten pixels wide. Then the magnitude of

the 2D Fourier Transform is computed. The contrast of the

image is then enhanced by using a high-pass filter. We write

F (κx, κy) the result of this processing.

B. The Generalized Radon Transform

To detect the wake, two things are desirable: first, to increase

the signal to noise ratio (SNR) of the wake signature; second,

to reduce the surface of the signature (i.e. to concentrate the

signal into a single spike), which is easier to detect. Thus,

the main idea is to compute the sum of the image spectrum

along all possible wake loci. If a wake is indeed present,

then the sum on the locus of the wake will have a much

higher value than the sum for other loci, and the wake can

be detected by thresholding the sums. This is in fact nothing

more than the Generalized Radon Transform (GRT) of the

spectrum defined for a family of curves of parameters (U, θ0)

having gU,θ0
(κx, κy) = 0 as implicit equation. The transform

R of F for a wake locus of parameters (U, θ0), will be:

R(kU , θ0) =

∫∫ +∞

−∞

F (κx, κy)δ (gU,θ0
(κx, κy)) dκxdκy (5)

Alternatively, it can be noticed that a particular point of F
located at (κx, κy) can intercept a family of curves which

parameters (U, θ0), or alternatively (k0
U , θ0), are defined by

the following equation:

k0
U (θ0) =

√

κ2
x + κ2

y cos2 (θ0 − arctan(κy/κx)) (6)

These curves are sinusoids in the (k0
U , θ0) plane. After per-

forming the GRT, the local mean is removed to the result so

as to enhance the visibility of the spike that would be present

should a wake be present in the image. We note R′ the result

of this operation.

C. Improving the detection with Stochastic Matched F iltering

The spikes in R′ can be isolated from noise using a detection

threshold, which could for example be set at m + kσ, where

m is the average of R′, σ its standard deviation, and k is a

constant which should ideally be higher than 3 if the noise is

Gaussian. The noise in R′ comes from the Radon Transform of

anything that is not a wake in the original image, for instance,

other waves of the ocean. Noise becomes more of a problem

for high sea states and small, slow ships. The position (kU , θ0)
of the spike gives, of course, the speed and direction of the

ship.

If the shape of a spike corresponding to a wake in R′

were constant everywhere in the image, whatever the imaging

conditions or the ship and its speed, matched filtering could

have been used to increase the visibility of the spike in

noise. Matched filtering is indeed the optimal linear filter for

maximizing the SNR in the presence of additive stochastic

white noise. Alas, this is not the case here.

Recently, Stochastic Matched Filtering (SMF) has been

proposed [5]; it extends the traditional matched filtering to

cases where all the instances of the signal to detect bear some

resemblance but also differ in some random changes. This is

exactly the situation we are in. To quickly explain this method,

let us note r a chunk of R′: this is a 1-D vector resulting from



the concatenation of lines of a 2-D window of n pixels. This

vector can be written:

r = s + n (7)

Here s is the useful signal, n is the noise. If the signal to

detect typically lives in a window w of length n, it is possible

to compute the n × n normalized covariance matrix Cw of

windows containing useful signal. This is done over several

sample windows w1...wm (m > n) of w acquired either in

real images or simulated. The same can be done for windows

known to contain only noise (we note Cn that matrix). Then

matrix C = C
−1
n Cw of size n × n is computed. It can

then be shown that filtering r with any eigenvector hi of C

associated to an eigenvalue λi > 1 guarantees an increase of

the signal-to-noise ratio; this increase is theoretically equal to

λi if ht
iCwhi = 1. As such, it is possible to determine if the

signal is present or absent by thresholding the result of the

filtering by the hi’s.

IV. BUILDING THE STOCHASTIC MATCHED FILTERS

In this stage, the covariances of the signal (free of any noise)

and of the noise (free of any useful signal) will be estimated

via simulation and by using actual images. This is often long

(up to a day in our case), but it can be done offline.

First, the size of the spike to detect must be estimated. This

is done via trial and error; in our case, we chose a nine pixels

wide window (thus n = 9 × 9 = 81). Then the covariance

matrices are estimated. At least n samples must be used to

estimate Cn and Cw, or the C will be singular.

A. Estimating Cn

The pre-processing and GRT algorithm is used on a body

of real images. For each image, random windows are chosen

and added to a pool of samples. The covariance matrix Cn of

that pool can then be computed. This matrix is experimentally

found to be nearly diagonal, which means the noise is spatially

uncorrelated.

B. Estimating Cw

We considered nine classes Hi, i ∈ [1..9] of generic hulls:

sailboat, liner, coastal patrol ship, frigate (DTMB 5415),

tanker/freighter, attack submarine, and Wigley parabolic hulls

of various length-to-beam ratio (4, 5 and 6). The length

distribution of each ship in a given class followed a hand-tuned

Gaussian distribution. The speed distribution was uniform.

Each class was given a reference model si
0 of length Li

0. The

other ships si
j , j ≥ 1 in the class were scaled versions of si

0,

having a length Li
j , and a speed U i

j . Speeds are taken so that

wavelengths k0
U vary at a step of 1 m−1 with 50 ships per k0

U .

Figure 2 shows the distribution of ships we used for this paper.

For each reference model si
0, the amplitude function Ai

0(U, θ)
(see eq. 1) can be computed for all angles θ and a wide and

finely sampled range of speeds. This is done by numerical

integration over a ship hull [6]. This operation is slightly

computation intensive, which is why it has only been done for

the reference models. Figure 3 shows AU (θ) for the reference
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Fig. 2: Distribution of the ship samples used to build the

stochastic matched filters. The legend indicates the reference

ship used for each class.

Fig. 3: Magnitude of complex function A(θ) for a SSN 688

class submarine at periscope depth.

chosen for the submarine class, with θ ∈ [−π /2, +π /2] and

U between 0.3 and 12.8 m/s.

Then, the amplitude function A(θ) for ship si
j is deduced

from the amplitude function of the class model si
0. Indeed,

two ships differing only from their scale, and sharing the same

Froude number U/
√

gL, have the same wake pattern; the ratio

of the wave heights is equal to the ratio of the ship scales.

Thus, by knowing U i
j , Li

j and Li
0, the amplitude function for

si
j is:

Ai
j(θ) =

Li
j

Li
0

Ai
0

(
√

Li
j

Lj
0

, θ

)

(8)

By knowing the amplitude function Ai
j(θ) and the locus of

the wake spectrum gUi
j
(κx, κy), a simulated F image can be

built from scratch as if it were obtained by the preprocessing

explained in section III-A; then its Radon transform R′ can

be computed, and the window containing the spike can be

extracted and added to the pool of signal samples, as in

figure 4.

But there is one final catch: amplitude function A(θ) cannot

be used directly, but rather HA(θ) (see section II). In practice,

this would add a whole new set of parameters and complicate

the simulation. However, some effects of the imaging situation

cannot be neglected. In particular, depending on the position of

the sun (in an optical photograph), only one arm of the wake

will be well visible. For instance, in figure 1a, the left arm is

better seen than the right one; and indeed, only one half of the

wake spectrum is clearly visible in figure 1b. Some additional

diversity can be added to mimic the effect of lighting. For
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Fig. 4: Typical GRT of a noise-free wake spectrum.
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Fig. 5: The three best SMF obtained through the simulation

process.

each ship, we chose to weight the amplitude function Ai
j(θ)

by a Gaussian function of center Θi
j and of width σi

j ; the

directions where this function is nearly 1 represent those where

the wake is clearly visible because it is well lighted. Also, the

amplitude of the signal must be scaled properly to match the

range of values returned by the sensor. In the end, the SMF’s

are obtained using eigenvector decomposition; figure 5 shows

the filters associated with the three best eigenvalues. Notice

that only the spike appears. When the noise level decreases,

however, the filters become very similar to the sample obtained

in figure 4, which agrees with intuition.

V. RESULTS AND CONCLUSIONS

We made experiments on a body of 64 optical, met-

ric resolution images courtesy of the USGS obtained on

terraserver.com. The GRT performs well in concentrat-

ing the energy of the wake but we observed it never performed

better than the human eye, in that the wake spectrum had to

be visible in the Fourier transform for the algorithm to have

a chance to work.

The transform was then cleaned using the SMF. In our

case, the highest eigenvalue of C had a value of 81.35, that

is 19.10 dB. Y et, the gain in SNR never exceeded 4 dB

for all our images, see for instance figure 6. However, our

body of “learning” images was a mix various sea states and

configurations: the theoretical covariance of noise hence does

not necessarily fit the noise actually present in the image since

some operational compromises had been made. To try and

reach the theoretical SNR improvement, it would therefore be

preferable to have several banks of matched filters, one for

each sea state. This involves higher simulation costs, but once

this is done, the SMF has exactly the same complexity as any

linear filter and can be computed efficiently by a fast Fourier

transform. There is therefore no reason not to use it to increase

the robustness of the signal.

Our approach is general, in that it can be used for optical

pictures, but also for SAR images, provided that the Kelvin
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Fig. 6: Raw GRT for image from figure 1a (above) and

result after using SMF (below). Images are scaled so that

the standard deviation of noise is unitary. There is a 3.28 dB

improvement in the SNR when SMF is used.

wake is visible, which means that the imaging configuration

must have been designed for that task. There are, however,

restrictions to the method in that the depth of the sea must

be infinite (otherwise the locus has a different expression,

but this could be adapted) and the ship must mot be turning

(which smears the locus of the spectrum and precludes proper

detection).

As for stochastic matched filtering, its originality is pre-

cisely to help improve the SNR when the signal is not known

deterministically, but only through its covariance. This is

often the case when thresholding transforms, such as wavelet

transforms, other types of Radon transforms, etc. As such,

there is probably plenty of room for exploration with this

method.
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