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Abstract— We describe in detail the theoretical and practical
implementation aspects of a simulation for marine radars which
can, in particular, be used in multistatic configurations. Since
the simulator is intended to deliver pseudo-raw signals, it can be
used later as a tool to benchmark and improve post-processing
algorithms such as bistatic synthetic aperture radar focusing
algorithms and ship wake detection algorithms. The work is
divided into two parts. This paper reviews and recalls theoretical
prerequisites necessary for implementing such a simulator. In-
cluded are the full derivation of the bistatic radar equation from
the transmitter to the receiver, accounting also for the transmit-
receive time, a description of the sea state phenomenology, a
review of the theory of electromagnetic scattering from the sea
surface and the presentation and validation of the method used
in the simulation. A companion paper discusses the practical
implementation aspects of the simulator as well as an analysis of
our results.

Index Terms— Marine surveillance systems, bistatic radar,
bistatic scattering, radar simulation, SAR imagery.

I. INTRODUCTION

A. Context

Despite the sheer amount of work done to improve the
use of radar in the marine environment, there are still many
delicate points to solve, notably when it comes to the influence
and the characterization of the sea clutter as compared to the
actual signature of the targets.

Current design trends for next-generation surveillance sys-
tems involve the use of multiple sensors to augment the
volume of information and increase the robustness of sys-
tems to noise. When many radars look at the same scene,
they can work independently and provide symbolic data that
will be merged afterwards to build a synthetic view of the
scene. However, the radars could also work together using
a multistatic configuration, where a single transmitter would
light the scene and the other sensors would act as receivers.
The purported advantages of multistatic configurations as
opposed to the traditional monostatic configuration – where
the transmitter and the receiver are identical – are threefold: i)
the receivers are passive thus totally stealthy, ii) transmitters of
opportunity may be used and iii) some bistatic configurations
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might increase the visibility of ship wakes or of the ship
themselves.

On the other hand, multistatic configurations are also more
delicate to put into use. They involve more hardware means
and require the transmitter and the receiver to be synchronized,
although this tends to be easier to do today thanks to precise
GPS-provided time bases. This accounts for both the lack of
extensive experimental data in the literature as well as the
lack of knowledge to interpret them. Perhaps because of these
reasons, it seems that a significant part of the community
remains skeptical about bistatic configurations.

B. Problem statement and approach
The ultimate goal of this paper and its companion “Bistatic

radar imaging of the marine environment. Part II: simulation
and results analysis” [1], is to describe how a radar simulator
can be written by taking into account the most important
constraints of the general bistatic case. In an early prototyping
stage, such a simulation would help to understand what kind of
configuration would be most suited to image the environment.
Even when an operational system is available, a simulator
remains indispensable because it enables engineers to keep
a total control over the parameters of the imaging process.
This is often necessary when developing post-processing tools
and investigating new target detection and tracking strategies.
Radar simulators are common place in the monostatic case,
see e.g. [2]–[6]. Yet, no such work has been done in the
bistatic case to the best of our knowledge. Since we further-
more consider the marine environment, this adds additional
constraints on the simulation. Note that the topic of this work
really is the design and the validation of the simulation strategy
but not the exploitation of the simulator to find an “optimal”
configuration (the notion of optimality requires application-
dependent criteria and metrics): this is left for future work.

This paper, besides this introduction, aims at recalling
the theoretical background necessary to understand the radar
imaging process and to build a simulation, and clarifying
things that are sometimes taken as granted in the literature
with a thorough treatment. First, the free space propagation
process is described in section II. The bistatic and polarimetric
radar equation is derived (section II-A) with a careful treatment
of the various polarimetric frame changes. Subsection II-
B presents the derivation of the transmission delay in the
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bistatic case. Section III presents the spectral description of
the sea surface. Then, the important aspect of the radar cross
section (RCS) modeling is tackled, bearing in mind that the
method should be a good compromise between speed and
accuracy. Accordingly, the paper ends with the presentation
and the validation of a semi-deterministic, semi-statistical RCS
computation method suitable for the simulation of a discretized
ocean surface in any bistatic configuration. It should be noted
that even if the marine environment is considered here, most
of the notions are also valid for ground imaging radar.

C. Notations and conventions

All frames are orthonormal and direct. Boldface indicates
a vector or a matrix (V); the circumflex accent denotes an
unitary vector (û). Variables written without boldface are
scalars. When a vector variable is written without boldface,
then its scalar norm is used. Finally, {v}F means that we
consider the coordinates of vector v in frame F .

II. ELEMENTARY CONTRIBUTION OF A FACET

A. The bistatic and polarimetric radar equation

To obtain the contribution of a single facet, the whole radar
chain must be considered. This begins at the transmitting
antenna. We consider here the case of aperture antennas,
since, after a few simplifying assumptions stated below, the
analytical solution in the polarimetric case is easy to compute.
Today, slotted arrays or patch antennas are commonly used
too, but their analytical modeling is more difficult; besides, the
physical phenomena are more easily felt with simple aperture.
If an experimental solution is not available, it is customary to
approximate antennas by perfect apertures. The notations of
figure 1 are used.
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Fig. 1. Notations used to define the transmitted electric field.

A feeder illuminates the antenna, thus creating an electric
field on its surface. As a first approximation, the direction of
the electric field on the surface is constant. As a result, the
field EX at a point P ′ of the surface can be written as:

EX(P ′, t) = E0sX(t)I(P ′)p̂ (1)

where I is the illumination pattern of the feeder, sX is
the transmitted signal and p̂ is the so-called polarization
vector of the antenna. The polarization vector has components
(0, py, pz) in the transmitter’s frame X (x̂, ŷ, ẑ). Signal sX is
another parameter of the simulator; in the rest of the paper, it
is taken as a rising frequency ramp of bandwidth B centered
around a carrier f0 and of duration Tc.

To compute the field radiated at a given point P in space,
we assume the antennas to be perfect conductors and that the
Fraunhoffer approximation holds. The radiated field can then
be written as [7]:

E(P, t) = jke
e−jker

2πr
(n̂×D(P, t))× êr (2)

with:

D(P, t) =
∫∫

P ′∈S

EX(XP′, t)e−jke.XP.XP′
dS(P ′) (3)

where X is the origin of the aperture, n̂ is the local normal
to the aperture, r = ||XP|| and ke is the electromagnetic
wavenumber. Since the field EX has a constant direction, this
simplification can be made:

D(P, t) = EX(t)g(αy, αz)p̂ (4)

The antenna pattern g yields the amplitude of the electric field
diffracted by the aperture in the direction given by angles αy

and αz . Equation 2 thus becomes:

E(P, t) = jke
e−jker

2πr
EX(t)g(αy, αz) (n̂× p̂)× êr (5)

We write Ê = (n̂× p̂)× êr; since we are in the far field, Ê
lives in a plane. In the wave’s frame W(êαy , êαz , êr), Ê is
entirely defined by the two components Êαy

and Êαz
while

the third component is always zero:[
Êαy

Êαz

]
W

=
[

− cosαz 0
sinαy. sinαz cosαy

]
︸ ︷︷ ︸

A

[
pz

py

]
X

(6)

Matrix GX = g(αy, αz)A allows to write the polarization of
the transmitted wave as well as the directivity of the antenna
as a function of the transmitter’s polarization vector. Matrix
GX is either computed analytically for simple antennas (rect-
angular, elliptic), or acquired experimentally for real antennas.

Thanks to expression (6), the local incident electric field
over the surface of a target is known. Now that this is acquired,
the field E′(P, t) reflected by the target must be computed.
The frame conventions given in figure 2 show how, given the
incident wave’s frame I(êv, êh, êr) and the scattered wave’s
frame S(êv′ , êh′ , êr′), the attenuation and depolarization of
the scattered wave can be described by a (complex) scattering
matrix S = [Smn]:[

E′v(P, t)
E′h(P, t)

]
S

=
[
Svv Shv

Svh Shh

]
︸ ︷︷ ︸

S

[
Ev(P, t)
Eh(P, t)

]
I

(7)

The expression of S depends on the surface. It will be
discussed later in the case where a rough surface is considered,
in particular the ocean. It is important to notice that, when
computing E′(P ) from E(P ), the incident wave is described
by its two components in the incident wave’s frame I and
not in W which was used earlier to get the field created
by the transmitter. Here, êv is in the plane of incidence, i.e.
êh = êr × ẑl where ẑl is the local normal to the surface of
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Fig. 2. Notations used to define the bistatic scattering in a local facet’s
frame. Vectors êv and êv′ are in the same plane as the local normal ẑl.

the target. The electric field in I is merely deduced from the
electric field in W by a rotation R1:[

Ev(P, t)
Eh(P, t)

]
I

=
[

êαy .êv êαy .êh

êαz .êv êαz .êh

]
︸ ︷︷ ︸

R1

[
Ev(P, t)
Eh(P, t)

]
W

(8)

Once the reflected wave at the vicinity of the target is
known, the field at the center of the receiving antenna can
be computed as well. First, the field must be expressed in
the received wave’s frame W ′(êα′

y
, êα′

z
,−ê′r), as described in

figure 3. The transformation from frame S to frame W ′ is done
thanks to another rotation R2 followed by an axis inversion
which accounts for the fact that the backscattering alignment
convention is used:[

E′v(P, t)
E′h(P, t)

]
W

=
[

êα′
y
.êv′ êα′

z
.êv′

êα′
y
.êh′ êα′

z
.êh′

]
︸ ︷︷ ︸

R2

[
E′v(P, t)
E′h(P, t)

]
S

(9)

 ' z

e ' z

e ' y

− er '

x ' n '

E P 

y
R

 ' y

y '

z '

ER
ev '

eh'
P

e r 'E ' P 

Fig. 3. Notations used to define the received electric field.

The reciprocity theorem allows to compute the electric field
created by point P on the surface of the receiver, and write
to it in the receiver’s frame R(x̂′, ŷ′, ẑ′):

{ER}R (t) = jke
e−jker′

2πr′
g′(αy, αz)

{
p̂′

t
}
R

A′t {E′(P, t)}W′

(10)
where p̂′ is the receiver’s polarization vector (written in frame
R), A′ is the equivalent to matrix A discussed earlier, r′ =
||PR|| and g′ describes the aperture of the receiver. We write
GR = g′(αy, αz)A′.

When putting everything together, the so-called polarimetric

bistatic radar equation is obtained:

{ER(t)}R = −k2
e

e−jke(r+r′)

4π2r.r′
× ...

{p̂′t}RGR
tR2SR1GX{p̂}XE0(t) (11)

B. Bistatic time of flight

To complete the radar equation, the total distance r + r′

traveled by the electromagnetic wave must be known. This
distance accounts for the free-space distance loss as well as
the Doppler effect. Following Airiau and Khenchaf [7], we
assume that we know the position T(t0), P(t0) and R(t0)
and the speeds (supposed to be constant) VX, VP and VR

of the transmitter, the target and the receiver at time t0. We
know tX , the time when the signal has been transmitted. The
problem is to get the time tR when the signal is received and
the time of flight ∆t = tR − tX . If tP is the time when the
signal is reflected by the target and c0 the light velocity, then:

r = c0(tP − tX) (12)
r = ||P(tP )−X(tX)||

= ||XP(tX) + VP(tP − tX)|| (13)

with:

XP(tX) = XP(t0) + (VP −VX)(tX − t0) (14)

Equaling (12) and (13), squaring it, and solving for tP − tX
yields:

tP − tX =
XP(tX).VP +

√
∆1

c20 − V 2
P

(15)

where

∆1 = ||XP(tX).VP||2 + (c20 − V 2
P )||XP(tX)||2 (16)

Similarly:

r′ = c0.(tR − tP ) (17)
r′ = ||R(tR)−P(tP )||

= ||PR(tP ) + (tR − tP )VX|| (18)

which yields:

tR − tP =
PR(tP ).VR +

√
∆2

c20 − V 2
R

(19)

with

∆2 = ||PR(tP ).VR||2 + (c20 − V 2
R)||PR(tP )||2 (20)

and:

PR(tP ) = PR(tX) + (VR −VP)(tP − tX) (21)

The interval of time between the arrival of two consecutive
pulses varies as X, P and T move. The variation in the time
of flight also compresses or dilates the pulses, causing a
frequency shift (in reality, both phenomena are two aspects
of the Doppler effect); indeed, depending on the configuration
the end of the pulse may travel a different distance than the
beginning of the pulse. If the time of flight at the beginning
of the pulse is ∆t(t0), and the time of flight at t0 + dt is
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∆t(t0 +dt), the whole pulse is squeezed or dilated in time by
ratio:

ρDoppler ≈ 1 +
[
d∆t
dt

]
t=t0

(22)

If speeds are constant, this term is constant at the first order
on a whole pulse. The received signal will then be a chirp of
duration ρDopplerTc centered around f0/ρDoppler and sweeping
a bandwidth B/ρDoppler.

III. PHYSICAL AND GEOMETRICAL MODEL OF THE SEA
SURFACE

The scattering properties of the sea depend both on its elec-
tromagnetic characteristics and its shape. The electromagnetic
characteristics are defined by the dielectric constant which
in turn depends on the temperature and the salinity [8]. As
for the geometric properties, sea is generally modeled as a
random height field considered as a function of the position
(x, y) and time t. When the wind speed is low to moderate, a
first-order approximation of the sea surface can be obtained.
The sea is described as a linear superposition of individual
sinusoidal waves, each having a certain amplitude, pulsation,
initial phase, and direction. This spectral representation is
coherent with the linearized Navier-Stokes equations with
the boundary conditions describing the equilibrium of the
air/sea interface [9], and is valid for small surface slopes,
and small waves amplitude (in front of their wavelength).
The shape of the power spectral density (PSD) of the wave
height function h(x, y) at a fixed time t has been determined
empirically during numerous oceanographic trials. The PSD
is a 2D function S, generally written as the product of two
components:

S(K, ...) =
1
K
S1d(K, ...)Sdir(ψ, ...) (23)

In this equation, K = [Kx,Ky] is the (ocean) wave vector,
K is its norm, S1d is the (1D) omnidirectional wave height
spectrum (also known as the amplitude spectrum) and Sdir is
the so-called spread function. The role of the spread function
is to describe the fact that waves will tend to be higher as
the difference ψ between the direction of the waves and the
direction of the wind becomes smaller. Many directional and
omnidirectional spectra exist, since those are mostly derived
from various series of experimental measures.

A. Omnidirectional wave height spectra

The models described by Philips [10], Pierson and
Moskowitz [11], Fung and Lee [12], the JONSWAP [13] and
more recently Elfouhaily [14] are probably among the most
used omnidirectional spectra. The models depend on a varying
number of parameters, the most important of which are the
wind speed and wind direction. Generally, spectra consider
fully-developed sea created when the wind has blown steadily
over the surface for a long time (“old seas”), but the inverse
wave age Ω or the fetch are used in more recent spectra
(JONSWAP and Elfouhaily) so that younger seas can be taken
into account as well. In our work, we make use of both the
Elfouhaily spectrum and the Fung and Lee spectrum. The

former has an unwieldy expression but the reader may find
it in [14]. The latter is mathematically simpler, so we present
it here to fix the ideas; we also make use of it in Part II
to derive a few analytical results. Both spectra have a similar
physical meaning. The Fung and Lee spectrum is an attempt at
unifying and simplifying the Philips spectrum (valid for short,
capillarity waves) and the five functions used by Pierson and
Moskowitz to describe the amplitude spectrum for different
intervals of the ocean wavenumber. Instead of five parts, the
Fung and Lee spectrum can be written in two parts:

S1d, FL =
{

S1d, FL, gravity(K) if K ≤ 4 rad/m
S1d, FL, capillary(K) if K > 4 rad/m (24)

• S1d, FL, gravity is a modified Pierson and Moskowitz spec-
trum describing the gravity waves:

S1d, FL, gravity(K) =
1.4.10−3

K3
exp

[
− 0.74g2

0

K2U4
1950

]
(25)

where g0 is the acceleration of gravity and U1950 is the
wind speed at 1950 cm above the mean sea level (AMSL).

• S1d, FL, capillary is a modified Philips spectrum valid for
small scale, capillary waves:

S1d, FL, capillary(K) = a0(1 + 3K̄2)
[
K(1 + K̄2)

]−(p+1)/2

(26)
where a0 = 0.875(2π)p−1g

(1−p)/2
0 and p = 5 −

log10(U0). Here U0 is the friction wind speed, that is, the
wind speed at the sea level (in cm/s), which is related to
the wind speed Uz at altitude z (in cm) by:

Uz = (U0/0.4)ln(z/Z0) [cm/s] (27)

with Z0 = 0.684/U0 + 4.28.10−5U2
0 − 0.0443 [cm].

Finally, K̄ = K/Km. Constant Km is equal to
√
g0ρ/τ

where ρ is the sea water density and τ is the surface
tension; the computed value of Km is 3.63 rad/m. This
relation describes the exponential-like decay of the wind
speed in the boundary layer above the sea surface, and
is only strictly valid for one fixed sea/air temperature
difference not mentioned in Fung and Lee’s paper.

The Fung and Lee spectrum is theoretically valid only for wind
speeds such that U0 is above 12 cm/s, since the experimental
measures leading to the spectrum have not been carried out
for lower wind speeds. This excludes calm sea states (0 and
1). Similar restrictions exist for other spectra as well even if
those are often conveniently forgotten. This, however, is not
very disturbing in the sense that the wave heights as well as
the sea RCS degenerate graciously when U0 → 0. Figure 4
provides a comparison between the Fung and Lee spectrum
for gravity waves S1d, FL, gravity (figure 4, left), the complete
Fung and Lee spectrum (figure 4, middle), and the Elfouhaily
spectrum with the inverse wave-age corresponding to a fully-
developed sea so that conditions are the same as for the Fung
& Lee spectrum (figure 4, right). Notice how the full Fung
and Lee spectrum provides more energy for capillary waves
but also how it has a faster decay as compared to the Pierson,
gravity part. The Elfouhaily spectrum has the same aspect,
with an even faster decay, and even more energy put into it. For
all three spectra, when the wind speed augments, the spectrum
becomes broader, which explains why waves become higher.
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Fig. 4. Comparison between the gravity-waves Pierson-Moskowitz spectrum used as the low-frequency part of the Fung & Lee spectrum (left), the complete
Fung and Lee spectrum (middle) and the Elfouhaily spectrum for the inverse wave-age corresponding to a fully-developed sea (right).

B. Directional wave height spectra

Here again, a great deal of models exist to represent the
fact that the wave energy has an angular distribution as well.
Longuet-Higgins [15] proposed a simple dependence to the
wind direction in the form of a cosine-2s function:

Sdir, LH(K, ψ) =
(

2s − 1
π

)
Γ2(s+ 1)
Γ(2s+ 1)

cos2s

(
ψ − ψ0

2

)
(28)

where s ≥ 2 is an integer parameter, Γ is Euler’s Gamma
function, ψ0 is the direction of the wind and ψ the propagation
direction of the wave. In this form, the function is normalized
so that its integral in the (K,ψ) space is one. However, as
pointed out in the literature [12], [14], [16] the spread function
should also depend on the wave number and other directional
spectra have subsequently been proposed to take this into
account. For instance, Fung and Lee [12] proposed:

Sdir, FL(K, ψ) = a1 + a2(1− e−bK2
) cos(2(ψ − ψ0)) (29)

with
a1 =

1
2π

(30)

a2 =
(1− τ)/(1 + τ)

π(1− β)
(31)

τ =
0.003 + 1.92× 10−3U1250

3.16× 10−3U1250
(32)

with U1250 the wind speed at 1250 cm AMSL in m/s and β
a function of the slope variance (which we took equal to zero
as a first approximation).

C. Surface velocity

As mentioned in section II-B, the velocity of the target is a
source of Doppler shift. The surface is assumed to be described
in the orthonormal “global” frame given by vectors x̂g , ŷg ,
ẑg , the latter being normal to the mean surface level. The
velocity to be considered for the Doppler effect is the orbital
velocity of a point P(x, y, z) of the surface. We consider here

a monochromatic wave of amplitude A, of wave vector K and
wave number ω. The orbital velocity at a P is then [17]:

v(P) = Aω ×
(

K
K

cos(K.P) + ẑg sin(K.P)
)

(33)

For small-amplitude, linear waves, this equation can be written
only as a function of ω, using the dispersion relation [18],
which is written here for a sea of infinite depth:

ω2 = g0K (34)

The motion of facets is at the origin of several artifacts in
radar images. When monostatic synthetic aperture radar (SAR)
imaging is performed, waves moving along the flight track
cause a slight degradation of azimuthal resolution (azimuth
smearing) . Also, the azimuth location of a target in SAR
images is found via the Doppler effect. If the target is not
static, as is the case with waves, the image undergoes an
azimuthal translation proportional to the Doppler shift. This
can be the origin of a non-uniform scatterer distribution in
the final SAR image which produces wave-like patterns; this
phenomenon is known as velocity bunching [19]. Since the
motion between two consecutive pulses as well as the speed
of a facet can be simulated, this phenomenon is implicitly
taken into account in the computed raw signal and is visible
if SAR focusing is eventually done.

There are, however, additional non-linear hydrodynamic
phenomena which affect both the surface shape as well as
the velocity. They are responsible in particular, for slope
asymmetry between the front and the back of gravity waves,
the fact that crests are more spiky and troughs more flat.
Those effects have been investigated e.g. by Harger [20], Gelpi
and Norris [17], Toporkov [9] and Saillard et al. [21]. As
far as velocities are concerned, a notable phenomenon is the
non-linear hydrodynamic modulation of capillary waves by
gravity waves; assuming a two-scales model, capillary waves
at a given point are carried along gravity waves but have an
additional tangent velocity due to the centripetal acceleration
of the gravity wave [20]. This causes further Doppler bias, but
the effect is second to the effect of linear motion [17].



6

IV. DERIVING THE SCATTERING MATRIX FROM THE SEA
SPECTRA

A. Background

The scattering matrix S = [Spq] will describe how the an
incident wave, transmitted from a source at a distance r from
a surface, will be reflected by said surface:

{E′(P, t)}S = S
e−jker

r
{E(P, t)}I (35)

When considering powers, the power scattering matrix Σ =
[σpq] is used, where σpq = SpqS

?
pq. Since Spq and σpq depend

on the area of the target, the normalized scattering matrix
Σ0 = [σ0

pq] is generally computed. Σ0 is normalized thusly:

Σ0 =
4πr2

A
Σ

where A is the area of the surface. In all generality, computing
the scattering matrix requires to come back to the Maxwell
equations which must be solved by taking the boundary condi-
tions on the surface into account. Methods exist to perform the
integration of these equations numerically, such as the Method
of Moments [22], [23], they are generally relatively precise but
computationally slow and memory-intensive, thus unsuitable
for large surfaces. Thus, for the kind of simulation desired
here, approximate solutions must be preferred.

Two phenomena exist: specular reflection and diffuse reflec-
tion [24]. Specular reflection is caused by large-scale waves
that are tilted in such a way that an electromagnetic wave
will “bounce” on it according to the law of reflection. Diffuse
reflection is caused by small ripples on the surface of the
sea which, having more or less the same wavelength as the
incoming electromagnetic wave, will interfere constructively
in a certain direction: this is the well-known Bragg diffraction
process. Computing the scattering matrix requires to take both
phenomena into account. This can be done either by comput-
ing the contribution of each phenomena separately and then
seeking to merge the contribution afterwards or by tackling the
two processes simultaneously. Before describing the method
we implemented, we briefly review the current state of the art
concerning the computation of the scattering matrix for rough
surfaces. The notations are detailed in figure 5.

B. The Kirchhoff Approximation

A common approach to tackle the specular reflection is the
Kirchoff Approximation (KA) introduced by Brekjovskikh in
1952 [25], [26], described in all generality for instance in
the book by Beckmann and Spizzichino [27] or Ulaby [28]
and derived in the bistatic case by Barrick [29]. The method
was found to give a good agreement with experimental results
when close to the specular direction but quickly tends to under-
estimate the reflection in other directions. In the KA model, the
assumption is made that the radius of curvature of the waves
is large enough in front of the electromagnetic wavelength so
that they may be locally approximated by a tangent plane.
For high electromagnetic frequencies, the geometric optics
approximation can then be used. This assumption becomes
truer as the frequency increases and begins to be reasonable
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Fig. 5. Global vs. local frame. The global frame is relative to the mean
sea level and is defined by xg , yg , zg , with “global” bistatic angles
(θg

i , θg
s , φg

i , φg
s). A local frame is defined by xl, yl, zl and bistatic angles

(θi, θs, φi, φs). Inside the cone, reflection is specular.

above one gigahertz with respect to gravity waves (as a result,
we do not consider lower frequencies in our work). The
Kirchhoff Approximation amounts to considering that only
specular points on a lighted surface will actually contribute to
the received signal. In a far-field configuration, the scattering
coefficients will thus be proportional to the probability of
finding such specular points, given the configuration of the
transmitter and the receiver:

σmn =
πk2

e ||q||2

q4z
|Umn|2Pr(Zx, Zy) (36)

where q = ke(ng
s − ng

i ) = [qx, qy, qz], Umn is a po-
larimetric parameter depending on the configuration an-
gles (θg

i , φ
g
i , θ

g
s , φ

g
s) and on Fresnel coefficients [28]; and

Pr(Zx, Zy) is the probability of finding a slope Zx = −qx/qz
and Zy = −qy/qz on the sea surface. The slope probability
function has been determined experimentally and fitted to an
analytical curve by Cox and Munk [30]. The KA model is ad-
equate to compute the average specular component for gravity
waves, which satisfy to the large radius of curvature condition,
and this for a sea of infinite area. It should be noted that
the model is only valid when close to the specular direction
(±20◦); when other directions are chosen, the components
of S will be underrated since the diffuse component is not
taken into account. The KA model can also be derived within
the physical optics framework [28], which slightly widens
the validity domain around the specular direction. Only the
geometric optics solution was implemented in our work.

C. The Small Perturbations Model

The Small-Perturbations Model (SPM) is well suited to
describe the diffuse component; it has first been introduced
for radio waves by Rice [31] and found agreement with wave
tank and outdoor experiments [32], [33] in the case of water;
the method is also well-developed in the book by Ishimaru
[34]. An improvement of the SPM is the Two Scales Model
(TSM) proposed, for instance, by Bass and Fuks [35] and
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applied to sea surfaces by Valenzuela [24] or Chan and Fung
[36]. It has been recently extended both to the bistatic case
and to sea applications by Khenchaf and Airiau [37].

The derivation of the Small Perturbations model begins by
stating that the total electric field E can be written as the sum
of the incident field, the reflected field (specular and diffuse)
and the transmitted field. Then, a boundary condition is intro-
duced; in the case where the surface is a perfect conductor,
the condition is that the tangential field is null on the surface.
The tangential field can be written as: Et = E − (E.zl).zl

where zl is the local normal. Vector zl is then expressed as
an expansion in powers of a small quantity ε, like the height
of the surface or its slope (in fact, both quantities have to be
small). This allows to write the reflected and transmitted field
as an expansion of individual electromagnetic waves in powers
of ε. At the order zero, the reflected wave is just the specular
component over a flat surface. The Small Perturbations model
is usually the development to the first order of the reflected
field, thus introducing some diffusion. As ε must be small, it
is supposed that the typical sea wave height is small compared
to the electromagnetic wavelength; as a result, only capillary
waves are represented. It is also assumed that no multiple
reflections occur. The mathematical derivation of the model
allows to introduce the spectral description of the surface
height, which we do know. Finally, in the bistatic case, the
components of the diffusion matrix and the inter-correlation
coefficients are given by:

σmn = 8k4
e cos2(θi) cos2(θs)|αmn|2S(||K′||,∠(K′,u))

(37)
where αmn is a polarimetric coefficient that depends on the
bistatic angles and the sea permittivity [34]; and u the vector
defining the wind direction. K′ is defined by:

K′ =
[
ke sin(θs) cos(φs − φi)− ke sin(θi)
ke sin(θs) sin(φs − φi)

]
(38)

This model is shown to be suitable for the estimation of the
diffuse component, but is invalid in the specular zone, where
it mathematically diverges and may reach unrealistically high
values in some configurations.

D. Composite models

1) The Two-Scales model (TS): This model has been
introduced a long time ago (see, for instance, [24], [35])
and extended to rough surfaces and bistatic conditions more
recently [37], [38]. It postulates that the ocean can be seen as
the superposition of two categories of waves: gravity waves
with large radius of curvature, and capillary waves, which
are smaller. In reality, the transition between large waves and
small waves is continuous and this is only a good-enough
approximation: in fact, there is good evidence that a three-
scales model could be more accurate, see for instance [39],
but three-scales numerical methods would probably be slow
to compute. One of the purported advantages of the TSM is to
augment the angular validity domain (especially for incidence
angles) of computed indexes.

The idea behind the Two-Scales model is that waves con-
tributing to the Bragg process are locally tilted by longer

waves. One then computes the scattering coefficients using
the Small Perturbations model for all possible combinations
of “local” bistatic angles (θl

i, θ
l
s, φ

l
i, φ

l
s). The Two-Scales scat-

tering coefficient is simply a weighted average of the local
Small-Perturbations coefficients, the weight being proportional
to the probability of occurrence of a given combination of
local bistatic angles. This probability is related to the slopes
probability distribution.

Interestingly enough, the few combinations of local bistatic
angles which are more of a specular nature do not corrupt
the weighted average, since the associated weight tends to
be small: there are few specular points for a surface of
infinite width. This also means that the Two-Scales model
underrates specular reflection. This can be solved simply by
adding the scattering coefficient obtained with the Kirchoff
Approximation, to the coefficient obtained with the TSM,
which is what makes it a composite model.

2) Other methods: There are other methods that try to
unify the specular and the diffuse reflection in a single
theory; the most recent review of those methods is probably
the paper by Elfouhaily and Guérin [40]. The Small-Slope
Approximation (SSA), introduced by Voronovich, is one of
these; the interested reader may refer to e.g. [41] for the
first order approximation (SSA-1) and [42] for the more
precise second-order approximation (SSA-2). SSA-1 has been
compared recently to the TSM in the bistatic case for sea
surfaces at the ENSIETA [43]; in this paper, TSM has been
shown to be close to SSA-1 but also to be more robust
since SSA-1 mathematically degenerates in some very specific
bistatic configurations where TSM behaves well. Besides, SSA
is slower to compute than the TSM. SSA-2 probably solves the
robustness issue but at an even greater computational cost. We
will compare further down our own results with those obtained
by Voronovitch to validate our model. The Extended Boundary
Condition Method has also been proposed and implemented
for rough surfaces by Franceschetti et al. [44], [45] and in
particular for the sea by Guo and Wu [46]; this method finds
agreement with the aforementioned methods and makes no
assumption on scale division; it has however been used with a
fractal model of sea surface which is harder to fit with physical
variables such as wind speed and direction. Finally, Elfouhaily
et al. [47] developed another composite method called the
Weighted Curves Approximation but we will not discuss it in
this paper.

V. SIMULATION OF THE SEA SCATTERING MATRIX, USING
A SEMI-DETERMINISTIC TWO-SCALES MODEL (SD-TSM)

A. Motivation

All the methods mentioned above are statistical, in the
sense that the bistatic angles are given with reference to
the average plane of the sea: (θg

i , θ
g
s , φ

g
i , φ

g
s), as shown in

figure 5. Once the configuration is set, a diffusion coefficient
obtained for a given set of bistatic angles is an average, over
an infinite sea surface, of the real diffusion coefficient. The
average encompasses both gravity and capillary waves. The
advantage is that a particular sea height map is not needed.
These methods are therefore particularly suited to quickly



8

compute a link budget when designing a system. However,
the downsides are twofold. First, even if the average is known,
nothing is said about the way the RCS fluctuates around the
average. The speckle noise needs to be added later. Secondly,
when deterministic and/or local features such as ship wakes
or oil spills are present in the image, the local RCS can be
different, since the surface will sometimes be of a different
nature. For these reasons, the scene a simulation must be
represented as a digital elevation map, so that surface and
electromagnetic properties may be changed locally for a few
facets. This facet-based approach is recurrent in simulation.
However, some facets may be in a specular configuration,
others in a diffuse configuration. A strong emphasis is often
put on the diffuse reflection process in simulation [3]–[6]
which is understandable since these papers consider the case of
side-looking radar with intermediate incidences where diffuse
reflection contributes for most of the received power. Basically,
the approach is to emulate the statistical Two-Scales method
in a facet-based context. However the way they tackle the few
facets in specular reflection is, in our opinion, unclear; in [5]
and [6], only diffuse scattering is considered using the SPM;
in [3] and [4], we understand that basically the same approach
has been adopted. Yet if more diverse configurations are to be
simulated, such as those that might be doable in more “exotic”
bistatic configurations, locally specular reflections may have a
bigger influence.

B. Description
First, a deterministic wake height map is superimposed over

a particular realization of a sea height map, obtained with the
sea spectrum. This procedure is described in Part II, section
III-A. The resulting height map has n×m facets, each facet
having a surface dS. Subpixellic structures are considered
as a random, fine scale rough surface, described statistically.
We obtain the scattering coefficients for each point of the
surface by computing local bistatic angles with respect to local
normals. The scattering coefficients are computed by assuming
that the facets are, in fact, infinite, so that the KA and the SPM
can be used in the local frame to get Σ0, then the coefficient
is multiplied by the area of the facet.

This resembles the Two-Scales method but for a significant
difference. Here, since a small patch of sea is generated, the
proportion of specular points can be important enough that the
wrong, but very high values given by the SPM subroutine can
significantly distort the average. SPM coefficients are some-
times of the same order than the KA: about +10 dB, sometimes
many orders of magnitude higher (+90 dB), depending on
the configuration. Adding the KA and TSM contributions is
correct, adding the KA and SPM contribution is not.

Hence, we choose either the coefficients given by the KA if
the direction is nearly specular, or the coefficients given by the
SPM else. The specular region is given by an approximately
20◦ cone around the local normal. That is, when noting P a
facet, and γ the angle between the bisector of angle ˆXPR
and the local normal ẑl to the surface at P , the reflection is
specular when γ is approximately below 20◦ (see figure 5).

However, the transition between the specular and the diffuse
region must be smooth. Being inspired by the approach pro-

posed by the Applied Physics Laboratory to model underwater
sound scattering [48], we decided to compute an average of
the KA and TSM coefficients. The weights we came up with
are:
• for co-polarizations:

σnn = (1− w1)δSPσnn, SP + w1δKAσnn, K (39)

• for cross-polarizations:

σnm = (1− w2)δSPσnm, SP + w2δKAσnm, K (40)

with:

log10 w1(γ) = −
( γ

6π

)8

(41)

log10 w2(γ) = −
( γ

20π

)1.5

(42)

The weighting functions are polynomial in the log-space,
which allows for a simple, manual tuning. The coefficients
have been chosen empirically so as to somewhat minimize
abrupt changes of slope at the transition between the two
models, and this brings good results for all values of the
bistatic angles (θl

i, θ
l
s, φ

l
i, φ

l
s).

Figure 6 shows the value of the scattering coefficients with
fixed values of θl

i, θ
l
s, φl

i and by letting φs vary. As stated
above, it appears that the Kirchhoff approximation underrates
diffuse scattering (occurring here when φs is between 20 and
160◦), compared to values given by the SPM. In turn, the latter
does not behave well in the specular zone. Interpolation gives
better results.

In equations (39) and (40), two factors δSP and δKA appear.
Those are visibility coefficients and are equal either to zero or
to one. Their meaning is as follows.
• δKA is a macroscopic visibility factor, which influences

on specular reflection. For a given facet, δKA = 1 if and
only if the facet is visible from the transmitter and the
receiver and is not hidden by another facet. The visibility
is computed through a standard ray-tracing or Z-buffer
procedure.

• Diffuse reflection has a local nature and the masking of
one tile by another plays an irrelevant role. However,
some tiles may be tilted in such a way that the ray coming
from the transmitter and going to the receiver would have
to cross the air/water interface, which is impossible. Only
tiles such that n̂l

i.ẑ
l < 0 and n̂l

s.ẑ
l > 0 can contribute.

This condition is represented by the boolean δSP, which
is the local visibility factor.

The visibility factors do not play the same role everywhere.
When angles θg

i and θg
s are not excessive (say below 65◦),

all the waves are visible and the macroscopic visibility factor
is equal to one everywhere; the ray-tracing can then be safely
omitted. Conversely, when θg

i and θg
s are close to 90◦, as is the

case when coastal radars are used, the macroscopic visibility
factor is equal to zero everywhere; only diffuse reflection
will occur and again, the ray-tracing can be omitted. In the
“critical” zone going from about 65◦ to 85◦ for the angle of
incidence, some tiles may be visible and others may not; in
this range the ray-tracing must imperatively be used.
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Fig. 6. Local normalized scattering coefficients, for θl
i = 20◦, θl

s = 30◦,
φl

i = 0◦ and various φl
s. U1950 = 4.53 m/s, f0=10 GHz. Above: Kirchhoff

Approximation, middle: Small Perturbations, bottom: weighted average of KA
and SPM according to γ.

C. Validation

When locating the transceiver and the receiver at near
infinity (here, 105 m) and averaging over a large surface,
results similar to the conventional, statistical methods should
be obtained. A surface of 512×512 tiles at a one-meter reso-
lution has been considered here (experimentally, the average
does not depend much upon the discretization step). We
find an excellent agreement between our results, and those
obtained by Voronovich and Zavorotni [42] using SSA-2,
which they compared to experimental measures reproduced
here (see figure 7). The choice of the sea spectrum can has
a slight influence on the RCS, as is shown here with the
Fung and Lee spectrum vs. the Elfouhaily spectrum. The
Fung and Lee spectrum yields smaller returns than with the
Elfouhaily spectrum; the explanation is that the energy in the
capillary section of the spectrum tends to be lower in the
Fung and Lee spectrum, as remarked previously (see figure
4). Figure 8 shows the dependency of the scattering coefficient
with the wind direction, and reproduces experimental results
reported by Moore and Fung [49] in the same conditions.
The agreement is less evident but still well within acceptable
bounds: to that respect, we quote Long [50] (chapter 6, p.
353) who reminds us that in the context: “the ’average’
radar cross-section can change as much as 10 dB in a 1-
minute interval”. Keeping this in mind, we feel that even if
there are slight differences, the actual choice of the spectrum
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Fig. 8. Agreement test between the semi-deterministic two-scales method
(SD-TSM) using the Fung and Lee spectrum [12] or the Elfouhaily spectrum
[14], against experimental measures quoted after [49] at 13.9 GHz. Wind
speed is at z =1950 cm.

seems not to have such a high importance as far as the RCS
computation is concerned –which explains why even a crude
Gaussian spectrum has been often used to model capillary
waves. However, the spectrum does have a visible influence
on the texture of the surface; the directional spectrum is
the most important parameter here. Experimental measures
in figure 8 show differences between the upwind and the
downwind direction (0 and 180◦) since actual waves tend to
have steeper slopes in their direction of propagation. The linear
wave superposition theory cannot model this, which explains
why it predicts similar returns in both cases.

Last but not least, our method also yields quite similar
results to those obtained with the Two-Scales Model and SSA-
1 in the more general bistatic configurations presented in [43]
but that we omitted here for the sake of brevity.

VI. CONCLUSION

In this paper, we recalled the theoretical background neces-
sary to understand the bistatic imaging process in the marine
environment. However, most of the equations can be re-
used for the ground-imaging environment. Only the spectral
representation of the surface will change to represent e.g hill
and valleys instead of ocean waves, and the time evolution
of the surface is absent, which simplifies things. Particular
care was given to the different frame changes which occur
during the computation of the bistatic radar equation. These
frame changes are particularly important when implementing
Two Scales-like methods, be it the classic, statistical method
exposed in section IV-D.1, or the semi-deterministic, semi-
statistical facet-based version of the TSM presented in section
V and used in the simulation.

A particular note should be given for this latter version
of the TSM. The idea is certainly intuitive; it was already
touched upon by e.g. Valenzuela [24], and used in actual
simulations [6]. Yet the validation of the approach has, to the
best of our knowledge, not been presented satisfactorily before,
especially in the bistatic case. Besides, we showed that using
the SPM on a facet-per-facet basis requires a careful treatment
of the transition between the specular and the diffuse zone. An
approach based on a weighted average of the two components
has been proposed to solve this problem.

Several aspects were however left out since they were not
implemented; we mention them here for the sake of complete-
ness. For instance, only free-space propagation was described;
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Fig. 7. Agreement test between our semi-deterministic two-scales method (Fung and Lee spectrum [12] and Elfouhaily spectrum [14]), and SSA-2 (values
quoted from Voronovitch [42]), where the Elfouhaily spectrum was used. The wind speed is given z =10 m AMSL and the frequency is 14 GHz.

additional propagation phenomena such as atmospheric ducts
were left out, as was the damping of radio waves due to the
presence of rain and gas molecules. Also, only the linear sea
model was considered (which is a good approximation for low
to moderate winds only). Seas are also of nearly infinite depth,
though the finite depth case is not much different. Finally, we
make use of the Kirchhoff Approximation, which requires the
high radius of curvature condition; this needs to be changed
or adapted for HF radar.

The companion paper builds upon the theoretical elements
exposed here and presents a closer analysis of the implemen-
tation of the simulation. It tackles in particular, the delicate
question of the scene discretization, as well as the simulation
of ship wakes, and gives an overview of the computational
complexity associated to our approach. Finally, some simu-
lated images in both monostatic and bistatic configurations
are shown and analyzed.
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